SK-HEP-1Homo sapiens (Human)Cancer cell line

Also known as: SK-Hep-1, SK HEP-1, SK HEP 01, SK-Hep1, Sk-Hep1, SK Hep 1, SK Hep1, SKHEP-1, SKHEP1, SKHep1, SK_HEP1

🤖 AI SummaryBased on 16 publications

Quick Overview

Human endothelial cell line derived from liver adenocarcinoma, used in cancer research.

Detailed Summary

SK-HEP-1 is a human cell line derived from the ascitic fluid of a patient with liver adenocarcinoma. It is characterized as an endothelial cell line, showing features such as numerous pinocytotic vesicles, Weibel-Palade bodies, and vimentin-positive intermediate filaments. The cell line does not exhibit hepatocyte-specific functions, as evidenced by the absence of albumin, alpha-fibrinogen, and gamma-fibrinogen mRNA. SK-HEP-1 cells can form tubular networks when cultured on basement membrane materials like Matrigel or type I collagen, indicating their endothelial differentiation. This cell line has been used in studies related to tumor biology, angiogenesis, and cancer immunology.

Research Applications

Angiogenesis studiesTumor biologyCancer immunologyEndothelial differentiation

Key Characteristics

Endothelial originNo hepatocyte-specific functionsTubule formation on MatrigelVimentin-positiveWeibel-Palade bodies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0525
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age52
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseLiver and intrahepatic bile duct epithelial neoplasm
LineageLiver
SubtypeHepatocellular Carcinoma
OncoTree CodeHCC

DepMap Information

Source TypeATCC
Source IDACH-000361_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12
D12S391
18
D13S317
8,12
D16S539
12
D18S51
13,15
D19S433
12
D21S11
29,31
D2S1338
20,23
D3S1358
16
D5S818
10,13
D6S1043
11
D7S820
8,11
D8S1179
13,14
FGA
17
Penta D
13,14
Penta E
13
TH01
7,9
TPOX
9
vWA
14,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

New human tumor cell lines.";

Fogh J., Trempe G.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Analysis of established human carcinoma cell lines for lymphoreticular-associated membrane receptors.

Kerbel R.S., Pross H.F., Leibovitz A.

Int. J. Cancer 20:673-679(1977).

SK HEP-1: a human cell line of endothelial origin.";

Darlington G.J.

In Vitro Cell. Dev. Biol. Anim. 28:136-142(1992).

Purification of alpha 1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with alpha 1-microglobulin synthesized by human hepatocytes.

Revillard J.-P.

Eur. J. Biochem. 165:699-704(1987).

Liver cell lines.";

Darlington G.J.

Methods Enzymol. 151:19-38(1987).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines.

Ponchel F., Yakicier C., Ji J.-W., Ozturk M.

FASEB J. 7:1407-1413(1993).

p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.

Harris C.C.

Carcinogenesis 14:987-992(1993).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.

Itoh K.

Cell. Immunol. 177:176-181(1997).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.

Inazawa J.

Hepatology 35:1476-1484(2002).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes.

Svasti J.

J. Biomed. Biotechnol. 2010:437143.1-437143.18(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.

Xu J.-C.

Hepatology 58:706-717(2013).

High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.

Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.

Nat. Commun. 4:2218.1-2218.7(2013).

Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations.

Cevik D., Yildiz G., Ozturk M.

World J. Gastroenterol. 21:311-317(2015).

Serum-free suspension culturing of human cells: adaptation, growth, and cryopreservation.

Biaggio R.T., de Abreu-Neto M.S., Covas D.T., Swiech K.

Bioprocess Biosyst. Eng. 38:1495-1507(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

SK-Hep1: not hepatocellular carcinoma cells but a cell model for liver sinusoidal endothelial cells.

Tang C.-W., Li J.

Int. J. Clin. Exp. Pathol. 11:2931-2938(2018).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).