SK-MEL-28Homo sapiens (Human)Cancer cell line

Also known as: SK-Mel-28, SK.MEL.28, SK-MEL 28, SK MEL-28, SK MEL 28, SK Mel 28, SKMel-28, SKMEL-28, SK-MEL28, SK-Mel28, SK Mel28, SKMEL28, SKMel28, SKmel28, SKML-28, SK28, AU-Mel, P-36, P36

🤖 AI SummaryBased on 9 publications

Quick Overview

Human melanoma cell line derived from skin melanocytes, used in cancer research.

Detailed Summary

SK-MEL-28 is a human melanoma cell line derived from skin melanocytes. It is widely used in cancer research, particularly in studies involving melanoma. The cell line is characterized by its melanocyte origin and is utilized for investigating the molecular mechanisms of melanoma progression and therapeutic responses. Research on SK-MEL-28 has contributed to understanding the role of specific markers and genetic alterations in melanoma development. The cell line is part of several large-scale studies focusing on cancer genomics and drug sensitivity profiling.

Research Applications

Cancer researchMelanoma studiesDrug sensitivity profilingGenomic and transcriptomic analysis

Key Characteristics

Derived from skin melanocytesUsed in melanoma researchPart of large-scale cancer genomics studies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0526
SpeciesHomo sapiens (Human)
Tissue SourceSkin[UBERON:UBERON_0002097]

Donor Information

Age51
Age CategoryAdult
SexMale

Disease Information

DiseaseCutaneous melanoma
LineageSkin
SubtypeCutaneous Melanoma
OncoTree CodeSKCM

DepMap Information

Source TypeATCC
Source IDACH-000615_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590
MutationSimpleCDK4p.Arg24Cys (c.70C>T)Unspecified-Wistar
MutationSimpleEGFRp.Pro753Ser (c.2257C>T)Homozygous-from parent cell line SK-MEL-28
MutationSimplePTENp.Thr167Ala (c.499A>G)Homozygous-from parent cell line SK-MEL-28
MutationSimpleTERTc.-57A>C (c.161A>C) (A161C)UnspecifiedIn promoterfrom parent cell line SK-MEL-28
MutationSimpleTP53p.Leu145Arg (c.434T>G)Homozygous-from parent cell line SK-MEL-28

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10
D10S1248
16
D12S391
15,19
D13S317
11,12
D16S539
9,12
D18S51
12,16
D19S433
14
D1S1656
12
D21S11
28,29
D22S1045
11,15
D2S1338
18
D2S441
10,11
D3S1358
16,18
D5S818
11,13
D7S820
9.3,10
D8S1179
13
FGA
19
Penta D
9,10
Penta E
8,12
TH01
7
TPOX
8,12
vWA
16,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Constitutive transduction of peptide transporter and HLA genes restores antigen processing function and cytotoxic T cell-mediated immune recognition of human melanoma cells.

Coupar B., Qiu L., Parsons P.G., Moss D.J., Khanna R.

Int. J. Cancer 75:590-595(1998).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Thymine DNA glycosylase as a novel target for melanoma.";

Bellacosa A.

Oncogene 38:3710-3728(2019).

Genetic alterations in main candidate genes during melanoma progression.

Manca A., Botti G., Ascierto P.A., Lissia A., Cossu A., Palmieri G.

Oncotarget 9:8531-8541(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Standard melanoma-associated markers do not identify the MM127 metastatic melanoma cell line.

Haridas P., McGovern J.A., Kashyap A.S., McElwain D.L.S., Simpson M.J.

Sci. Rep. 6:24569-24569(2016).

Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas.

Petricoin E.F. 3rd, Gioeli D., Weber M.J.

Oncotarget 7:2734-2753(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Systems analysis of adaptive responses to MAP kinase pathway blockade in BRAF mutant melanoma.

Slingluff C.L. Jr., Weber M.J., Mackey A.J., Gioeli D., Bekiranov S.

PLoS ONE 10:E0138210-E0138210(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines.

Nieto L.

Pigment Cell Melanoma Res. 28:464-475(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.

Rosen N., Solit D.B.

Cancer Res. 74:2340-2350(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Functional profiling of live melanoma samples using a novel automated platform.

Schuchter L.M., Clark D.P.

PLoS ONE 7:E52760-E52760(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF.

Wolchok J.D., Houghton A.N., Solit D.B.

Oncogene 31:446-457(2012).

Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells.

Palmieri G.

Oncol. Rep. 25:1495-1502(2011).

Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032.

Koya R.C., Mischel P.S., Lo R.S., Ribas A.

J. Transl. Med. 8:39.1-39.11(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A gene expression signature of invasive potential in metastatic melanoma cells.

Baguley B.C., Eccles M.R.

PLoS ONE 4:E8461-E8461(2009).

Role of key-regulator genes in melanoma susceptibility and pathogenesis among patients from South Italy.

Palomba G., Palmieri G.

BMC Cancer 9:352.1-352.11(2009).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Genomic and molecular profiling predicts response to temozolomide in melanoma.

Friedman H.S., Nevins J.R., Ali-Osman F., Tyler D.S.

Clin. Cancer Res. 15:502-510(2009).

Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas.

Elder D.E., Flaherty K.T., Herlyn M., Nathanson K.L.

Mol. Cancer Ther. 7:2876-2883(2008).

Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.

Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.

Cancer Biol. Ther. 7:699-708(2008).

Confirmation of a BRAF mutation-associated gene expression signature in melanoma.

Johansson P., Pavey S., Hayward N.K.

Pigment Cell Res. 20:216-221(2007).

Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays.

Stark M.S., Hayward N.K.

Cancer Res. 67:2632-2642(2007).

Lack of extracellular signal-regulated kinase mitogen-activated protein kinase signaling shows a new type of melanoma.

Sharpless N.E.

Cancer Res. 67:1502-1512(2007).

Genomic profiling of malignant melanoma using tiling-resolution arrayCGH.

Guldberg P., Borg A.

Oncogene 26:4738-4748(2007).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.

Yasui K., Misawa-Furihata A., Kawakami Y., Inazawa J.

Oncogene 23:8796-8804(2004).

p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas.

Trent J.M., Bennett F., Miele L., Nickoloff B.J.

Mol. Cancer Ther. 3:895-902(2004).

Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma.

Tsao H., Goel V., Wu H., Yang G., Haluska F.G.

J. Invest. Dermatol. 122:337-341(2004).

Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T-lymphocyte reactivity to melanoma.

Hunt D.F., Engelhard V.H., Ross M.M., Slingluff C.L. Jr.

Cancer Res. 64:1157-1163(2004).

Characterization of human melanoma cell lines according to their migratory properties in vitro.

Quinones L.G., Garcia-Castro I.

In Vitro Cell. Dev. Biol. Anim. 40:35-42(2004).

Regulation of intracellular pH in human melanoma: potential therapeutic implications.

Berd D., Leeper D.B., Owen C.S.

Mol. Cancer Ther. 1:617-628(2002).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor.

Falcinelli S., Zambruno G., D'Atri S.

J. Invest. Dermatol. 115:1000-1007(2000).

Increased expression of insulin-like growth factor I receptor in malignant cells expressing aberrant p53: functional impact.

Lundeberg J., Wejde J., Bartolazzi A., Wiman K.G., Larsson O.

Cancer Res. 60:5278-5283(2000).

Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines.

Tsao H., Zhang X., Fowlkes K., Haluska F.G.

Cancer Res. 60:1800-1804(2000).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets.

Fountain J.W.

Genes Chromosomes Cancer 22:157-163(1998).

Malignant melanoma. Current status of the search for melanoma-specific antigens.

Houghton A.N., Oettgen H.F., Old L.J.

(In book chapter) Immunodermatology. Comprehensive Immunology, Vol 7; Safai B., Good R.A. (eds.); pp.557-576; Springer; Boston; USA (1981).

AU cell-surface antigen of human malignant melanoma: solubilization and partial characterization.

Carey T.E., Lloyd K.O., Takahashi T., Travassos L.R., Old L.J.

Proc. Natl. Acad. Sci. U.S.A. 76:2898-2902(1979).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Cell surface antigens of human malignant melanoma. II. Serological typing with immune adherence assays and definition of two new surface antigens.

Shiku H., Takahashi T., Oettgen H.F., Old L.J.

J. Exp. Med. 144:873-881(1976).

Cell surface antigens of human malignant melanoma: mixed hemadsorption assays for humoral immunity to cultured autologous melanoma cells.

Old L.J.

Proc. Natl. Acad. Sci. U.S.A. 73:3278-3282(1976).

Induction of growth factor RNA expression in human malignant melanoma: markers of transformation.

Albino A.P., Davis B.M., Nanus D.M.

Cancer Res. 51:4815-4820(1991).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression.

Kerbel R.S.

Proc. Natl. Acad. Sci. U.S.A. 88:6028-6032(1991).

Loss of polymorphic restriction fragments in malignant melanoma: implications for tumor heterogeneity.

Dracopoli N.C., Houghton A.N., Old L.J.

Proc. Natl. Acad. Sci. U.S.A. 82:1470-1474(1985).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

A pigmentation-associated, differentiation antigen of human melanoma defined by a precipitating antibody in human serum.

Mattes M.J., Thomson T.M., Old L.J., Lloyd K.O.

Int. J. Cancer 32:717-721(1983).

Two distinct cytotoxic T lymphocyte subpopulations in patients with Vogt-Koyanagi-Harada disease that recognize human melanoma cells.

Maezawa N., Yano A.

Microbiol. Immunol. 28:219-231(1984).

Detection of melanoma cells in bone marrow using monoclonal antibodies. A comparison of fluorescence activated cell sorting (FACS) and conventional immunofluorescence (IF).

Dantas M.E., Brown J.P., Thomas M.R., Robinson W.A., Glode L.M.

Cancer 52:949-953(1983).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Detection of cell surface and intracellular antigens by human monoclonal antibodies. Hybrid cell lines derived from lymphocytes of patients with malignant melanoma.

Old L.J.

J. Exp. Med. 158:53-65(1983).

Serological survey of normal humans for natural antibody to cell surface antigens of melanoma.

Old L.J.

Proc. Natl. Acad. Sci. U.S.A. 77:4260-4264(1980).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

Surface antigens of melanocytes and melanomas. Markers of melanocyte differentiation and melanoma subsets.

Houghton A.N., Eisinger M., Albino A.P., Cairncross J.G., Old L.J.

J. Exp. Med. 156:1755-1766(1982).

Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.

van Zijl P.L.

Eur. J. Cancer 31A:230-237(1995).

Radiosensitivity of new and established human melanoma cell lines: comparison of [3H]thymidine incorporation and soft agar clonogenic assays.

Finlay G.J., Holdaway K.M., Baguley B.C.

Eur. J. Cancer 30A:1370-1376(1994).

CDKN2A/p16 is inactivated in most melanoma cell lines.";

Gabrielli B.G., Parsons P.G., Hayward N.K.

Cancer Res. 57:4868-4875(1997).