SK-MEL-5Homo sapiens (Human)Cancer cell line
Also known as: SK-Mel-5, SK MEL 5, SK.MEL.5, SK-MEL5, SKMel-5, SKMEL-5, SKMEL5, SKMel5, SKmel5, AA-Mel
Quick Overview
Human melanoma cell line for cancer research and drug development.
Detailed Summary
Basic Information
Database ID | CVCL_0527 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Axillary lymph node[UBERON:UBERON_0001097] |
Donor Information
Age | 24 |
---|---|
Age Category | Adult |
Sex | Female |
Race | caucasian |
Disease Information
Disease | Cutaneous melanoma |
---|---|
Lineage | Skin |
Subtype | Cutaneous Melanoma |
OncoTree Code | SKCM |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000730_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
Gene deletion | CDKN2A | - | Homozygous | Possible | PubMed=26870271 |
MutationSimple | BRAF | p.Val600Glu (c.1799T>A) | Unspecified | - | PubMed=26214590 |
MutationSimple | TERT | c.242_243CC>TT (-138/-139CC>TT) | Unspecified | In promoter | PubMed=23348503 |
MutationNone reported | TP53 | - | - | - | PubMed=19787792 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
Mass spectrometric analysis of the HLA class I peptidome of melanoma cell lines as a promising tool for the identification of putative tumor-associated HLA epitopes.
Gloger A., Ritz D., Fugmann T., Neri D.
Cancer Immunol. Immunother. 65:1377-1393(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Malignant melanoma. Current status of the search for melanoma-specific antigens.
Houghton A.N., Oettgen H.F., Old L.J.
(In book chapter) Immunodermatology. Comprehensive Immunology, Vol 7; Safai B., Good R.A. (eds.); pp.557-576; Springer; Boston; USA (1981).
AU cell-surface antigen of human malignant melanoma: solubilization and partial characterization.
Carey T.E., Lloyd K.O., Takahashi T., Travassos L.R., Old L.J.
Proc. Natl. Acad. Sci. U.S.A. 76:2898-2902(1979).
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
Fogh J., Fogh J.M., Orfeo T.
J. Natl. Cancer Inst. 59:221-226(1977).
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
Fogh J., Wright W.C., Loveless J.D.
J. Natl. Cancer Inst. 58:209-214(1977).
Cell surface antigens of human malignant melanoma: mixed hemadsorption assays for humoral immunity to cultured autologous melanoma cells.
Old L.J.
Proc. Natl. Acad. Sci. U.S.A. 73:3278-3282(1976).
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
J. Natl. Cancer Inst. 83:757-766(1991).
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Cancer Res. 48:589-601(1988).
HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.
Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.
J. Natl. Cancer Inst. 66:1003-1012(1981).
Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.
van Zijl P.L.
Eur. J. Cancer 31A:230-237(1995).
Genetic evidence in melanoma and bladder cancers that p16 and p53 function in separate pathways of tumor suppression.
Cordon-Cardo C., Kamb A.
Am. J. Pathol. 146:1199-1206(1995).
Radiosensitivity of new and established human melanoma cell lines: comparison of [3H]thymidine incorporation and soft agar clonogenic assays.
Finlay G.J., Holdaway K.M., Baguley B.C.
Eur. J. Cancer 30A:1370-1376(1994).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
Increased expression of insulin-like growth factor I receptor in malignant cells expressing aberrant p53: functional impact.
Lundeberg J., Wejde J., Bartolazzi A., Wiman K.G., Larsson O.
Cancer Res. 60:5278-5283(2000).
Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T-lymphocyte reactivity to melanoma.
Hunt D.F., Engelhard V.H., Ross M.M., Slingluff C.L. Jr.
Cancer Res. 64:1157-1163(2004).
p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas.
Trent J.M., Bennett F., Miele L., Nickoloff B.J.
Mol. Cancer Ther. 3:895-902(2004).
Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.
Yasui K., Misawa-Furihata A., Kawakami Y., Inazawa J.
Oncogene 23:8796-8804(2004).
HLA class I and II genotype of the NCI-60 cell lines.";
Morse H.C. 3rd, Stroncek D., Marincola F.M.
J. Transl. Med. 3:11.1-11.8(2005).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays.
Stark M.S., Hayward N.K.
Cancer Res. 67:2632-2642(2007).
Confirmation of a BRAF mutation-associated gene expression signature in melanoma.
Johansson P., Pavey S., Hayward N.K.
Pigment Cell Res. 20:216-221(2007).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF.
Wolchok J.D., Houghton A.N., Solit D.B.
Oncogene 31:446-457(2012).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
Cancer Res. 73:4372-4382(2013).
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).