SK-MEL-5Homo sapiens (Human)Cancer cell line

Also known as: SK-Mel-5, SK MEL 5, SK.MEL.5, SK-MEL5, SKMel-5, SKMEL-5, SKMEL5, SKMel5, SKmel5, AA-Mel

🤖 AI SummaryBased on 13 publications

Quick Overview

Human melanoma cell line for cancer research and drug development.

Detailed Summary

SK-MEL-5 is a human melanoma cell line derived from a malignant melanoma tumor. It is widely used in cancer research for studying tumor biology, drug screening, and immunotherapy development. The cell line has been characterized for its genetic and molecular profiles, including mutations and gene expression patterns. Research on SK-MEL-5 has contributed to understanding the mechanisms of melanoma progression and therapeutic resistance. It is part of several large-scale studies, including the Cancer Cell Line Encyclopedia (CCLE) and other genomic and proteomic projects.
Generated on 6/15/2025

Basic Information

Database IDCVCL_0527
SpeciesHomo sapiens (Human)
Tissue SourceAxillary lymph node[UBERON:UBERON_0001097]

Donor Information

Age24
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseCutaneous melanoma
LineageSkin
SubtypeCutaneous Melanoma
OncoTree CodeSKCM

DepMap Information

Source TypeATCC
Source IDACH-000730_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590
MutationSimpleTERTc.242_243CC>TT (-138/-139CC>TT)UnspecifiedIn promoterPubMed=23348503
MutationNone reportedTP53---PubMed=19787792

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,13
D13S317
10,12
D16S539
10,12
D18S51
15,16
D19S433
14,15
D21S11
29
D2S1338
17,25
D3S1358
16,17
D5S818
11,13
D7S820
9,12
D8S1179
12,15
FGA
20.2,22.2
Penta D
9,11
Penta E
5,12
TH01
6,9
TPOX
11
vWA
14
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

Mass spectrometric analysis of the HLA class I peptidome of melanoma cell lines as a promising tool for the identification of putative tumor-associated HLA epitopes.

Gloger A., Ritz D., Fugmann T., Neri D.

Cancer Immunol. Immunother. 65:1377-1393(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Malignant melanoma. Current status of the search for melanoma-specific antigens.

Houghton A.N., Oettgen H.F., Old L.J.

(In book chapter) Immunodermatology. Comprehensive Immunology, Vol 7; Safai B., Good R.A. (eds.); pp.557-576; Springer; Boston; USA (1981).

AU cell-surface antigen of human malignant melanoma: solubilization and partial characterization.

Carey T.E., Lloyd K.O., Takahashi T., Travassos L.R., Old L.J.

Proc. Natl. Acad. Sci. U.S.A. 76:2898-2902(1979).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Cell surface antigens of human malignant melanoma: mixed hemadsorption assays for humoral immunity to cultured autologous melanoma cells.

Old L.J.

Proc. Natl. Acad. Sci. U.S.A. 73:3278-3282(1976).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.

van Zijl P.L.

Eur. J. Cancer 31A:230-237(1995).

Genetic evidence in melanoma and bladder cancers that p16 and p53 function in separate pathways of tumor suppression.

Cordon-Cardo C., Kamb A.

Am. J. Pathol. 146:1199-1206(1995).

Radiosensitivity of new and established human melanoma cell lines: comparison of [3H]thymidine incorporation and soft agar clonogenic assays.

Finlay G.J., Holdaway K.M., Baguley B.C.

Eur. J. Cancer 30A:1370-1376(1994).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Increased expression of insulin-like growth factor I receptor in malignant cells expressing aberrant p53: functional impact.

Lundeberg J., Wejde J., Bartolazzi A., Wiman K.G., Larsson O.

Cancer Res. 60:5278-5283(2000).

Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T-lymphocyte reactivity to melanoma.

Hunt D.F., Engelhard V.H., Ross M.M., Slingluff C.L. Jr.

Cancer Res. 64:1157-1163(2004).

p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas.

Trent J.M., Bennett F., Miele L., Nickoloff B.J.

Mol. Cancer Ther. 3:895-902(2004).

Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.

Yasui K., Misawa-Furihata A., Kawakami Y., Inazawa J.

Oncogene 23:8796-8804(2004).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays.

Stark M.S., Hayward N.K.

Cancer Res. 67:2632-2642(2007).

Confirmation of a BRAF mutation-associated gene expression signature in melanoma.

Johansson P., Pavey S., Hayward N.K.

Pigment Cell Res. 20:216-221(2007).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF.

Wolchok J.D., Houghton A.N., Solit D.B.

Oncogene 31:446-457(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.

Rosen N., Solit D.B.

Cancer Res. 74:2340-2350(2014).