SK-N-MCHomo sapiens (Human)Cancer cell line

Also known as: SK-NMC, SK-NM-C, SKNMC

🤖 AI SummaryBased on 15 publications

Quick Overview

SK-N-MC is a human neuroepithelial cell line derived from Ewing sarcoma, used in cancer research for studying tumor biology and...

Detailed Summary

SK-N-MC is a human neuroepithelial cell line established from Ewing sarcoma, commonly used in cancer research to investigate tumor biology, genetic alterations, and drug responses. It has been utilized in studies focusing on the role of Ret and FGF receptor tyrosine kinase activation in cell scattering and growth inhibition. Additionally, SK-N-MC has been involved in research on genomic alterations, such as 1q gain and CDT2 overexpression, which are associated with aggressive forms of Ewing sarcoma. The cell line is also used to study the impact of CDKN2A deletions and TP53 mutations on clinical outcomes. Its utility extends to understanding the molecular mechanisms underlying metastasis and treatment resistance in sarcomas.

Research Applications

Cancer researchTumor biologyGenomic alterationsDrug sensitivityMetastasis studiesTreatment resistance

Key Characteristics

Ewing sarcoma-derivedNeuroepithelial originUsed in studying Ret and FGF receptor signalingAssociated with 1q gain and CDT2 overexpressionCDKN2A deletion and TP53 mutation involvement
Generated on 6/15/2025

Basic Information

Database IDCVCL_0530
SpeciesHomo sapiens (Human)
Tissue SourceOrbital region[UBERON:UBERON_0004088]

Donor Information

Age14
Age CategoryPediatric
SexFemale
Racecaucasian
Subtype FeaturesEWS-FLI

Disease Information

DiseasePeripheral primitive neuroectodermal tumor
LineageBone
SubtypeEwing Sarcoma
OncoTree CodeES

DepMap Information

Source TypeATCC
Source IDACH-000039_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53c.170_572delUnspecified-from parent cell line SK-N-MC
Gene fusionEWSR1EWSR1-FLI1, EWS-FLI1-Type 1 fusionPubMed=15150091

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
11
D16S539
12
D18S51
13,14
D19S433
13,15.2
D21S11
30,31.2
D2S1338
17,21
D3S1358
15
D5S818
11
D7S820
8
D8S1179
10
FGA
21,25
Penta D
8,9,13
Penta E
16,18
SE33
16
TH01
9.3
TPOX
9,11
vWA
17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells.

Muller I., Walles H., Hartmann W., Rossig C.

Mol. Ther. 27:933-946(2019).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

CXCL14, CXCR7 expression and CXCR4 splice variant ratio associate with survival and metastases in Ewing sarcoma patients.

Schmidt T., Szuhai K., Hogendoorn P.C.W.

Eur. J. Cancer 51:2624-2633(2015).

Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.

Harris E., Monks A., Morris J.

Mol. Cancer Ther. 14:2452-2462(2015).

Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations.

Zhang J.-H., Delattre O.

Cancer Discov. 4:1342-1353(2014).

The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation.

Catchpoole D., Llombart-Bosch A., Waldman T., Khan J.

PLoS Genet. 10:E1004475-E1004475(2014).

Characterization and drug resistance patterns of Ewing's sarcoma family tumor cell lines.

Jenabi J., Ji L.-Y., Triche T.J., Lawlor E.R., Reynolds C.P.

PLoS ONE 8:E80060-E80060(2013).

Dynamic DNA methylation across diverse human cell lines and tissues.

Crawford G.E., Absher D.M., Wold B.J., Myers R.M.

Genome Res. 23:555-567(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.

Debiec-Rychter M., Schaefer K.-L., de Alava E.

Oncogene 31:1287-1298(2012).

Check your cultures! A list of cross-contaminated or misidentified cell lines.

Freshney R.I.

Int. J. Cancer 127:1-8(2010).

Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort.

Buerger H., Aigner T., Gabbert H.E., Poremba C.

Genes Chromosomes Cancer 49:40-51(2010).

Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma.

Savola S., Nardi F., Scotlandi K., Picci P., Knuutila S.

Cytogenet. Genome Res. 119:21-26(2007).

Expression profiles and clinical relationships of ID2, CDKN1B, and CDKN2A in primary neuroblastoma.

Gebauer S., Yu A.L.-T., Omura-Minamisawa M., Batova A., Diccianni M.B.

Genes Chromosomes Cancer 41:297-308(2004).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Cell scattering of SK-N-MC neuroepithelioma cells in response to Ret and FGF receptor tyrosine kinase activation is correlated with sustained ERK2 activation.

Bos J.L., van der Saag P.T., de Laat S.W., den Hertog J.

Oncogene 14:1147-1157(1997).

The p16 and p18 tumor suppressor genes in neuroblastoma: implications for drug resistance.

Diccianni M.B., Chau L.S., Batova A., Vu T.Q., Yu A.L.-T.

Cancer Lett. 104:183-192(1996).

Immunostaining of the p30/32MIC2 antigen and molecular detection of EWS rearrangements for the diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumor.

Lollini P.-L., Picci P., Bertoni F., Baldini N.

Hum. Pathol. 27:408-416(1996).

Ret receptor tyrosine kinase activates extracellular signal-regulated kinase 2 in SK-N-MC cells.

Burgering B.M.T., Baas P.D., Bos J.L.

Oncogene 11:2207-2214(1995).

Narrow spectrum of infrequent p53 mutations and absence of MDM2 amplification in Ewing tumours.

Salzer-Kuntschik M., Gadner H.

Oncogene 8:2683-2690(1993).

EWS-erg and EWS-Fli1 fusion transcripts in Ewing's sarcoma and primitive neuroectodermal tumors with variant translocations.

Nycum L.M., Emanuel B.S., Evans G.A.

J. Clin. Invest. 94:489-496(1994).

EWS-FLI-1 and EWS-ERG chimeric mRNAs in Ewing's sarcoma and primitive neuroectodermal tumor.

Sugimoto T., Ohki M., Hayashi Y.

Int. J. Cancer 63:500-504(1995).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Selective toxicity of 6-hydroxydopamine and ascorbate for human neuroblastoma in vitro: a model for clearing marrow prior to autologous transplant.

Reynolds C.P., Reynolds D.A., Frenkel E.P., Smith R.G.

Cancer Res. 42:1331-1336(1982).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture.

Biedler J.L., Helson L., Spengler B.A.

Cancer Res. 33:2643-2652(1973).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Human neuroblastoma cells and 13-cis-retinoic acid.";

Helson L., Helson C.

J. Neurooncol. 3:39-41(1985).

Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection.

Meyer zum Buschenfelde K.-H.

Proc. Natl. Acad. Sci. U.S.A. 86:2804-2808(1989).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lives in culture.

Biedler J.L., Spengler B.A.

J. Natl. Cancer Inst. 57:683-695(1976).

Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones.

Biedler J.L., Roffler-Tarlov S., Schachner M., Freedman L.S.

Cancer Res. 38:3751-3757(1978).

Systematic multi-omics profiling of Ewing sarcoma cell lines.";

Orth M.F.

Thesis PhD (2021); Ludwig Maximilians University of Munich; Munich; Germany.

Tumor cell lines of the peripheral nervous system.";

Israel M.A., Thiele C.J.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.43-78; Academic Press; New York; USA (1994).

Homogeneously staining regions and double minute chromosomes, prevalent cytogenetic abnormalities of human neuroblastoma cells.

Biedler J.L., Meyers M.B., Spengler B.A.

(In book chapter) Advances in cellular neurobiology, Vol. 4; Fedoroff S., Hertz L. (eds.); pp.267-307; Academic Press; New York; USA (1983).

Chromosome abnormalities in human tumor cells in culture.";

Biedler J.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.359-394; Springer; New York; USA (1975).