SK-N-SHHomo sapiens (Human)Cancer cell line

Also known as: SK N SH, SKN-SH, SK-NSH, SKNSH, NSH, SK-N-CH (Occasionally.)

🤖 AI SummaryBased on 13 publications

Quick Overview

Human neuroblastoma cell line for cancer research and drug development.

Detailed Summary

SK-N-SH is a human neuroblastoma cell line derived from a neuroblastoma tumor. It is widely used in cancer research for studying tumor biology, drug screening, and therapeutic development. The cell line exhibits characteristics of neuroblastoma, including specific genetic and molecular features that make it a valuable model for investigating neuroblastoma progression and treatment responses. Research on SK-N-SH has contributed to understanding the role of genetic alterations, such as MYCN amplification, in neuroblastoma development and has been utilized in studies involving transcriptomic profiling, chromosomal abnormalities, and drug resistance mechanisms. This cell line is also employed in studies related to vitamin E's effects on tumor growth and in investigations of HLA types and immune responses.

Research Applications

Cancer researchDrug screeningTherapeutic developmentTranscriptomic profilingChromosomal abnormalitiesDrug resistance mechanismsVitamin E effects on tumor growthHLA type and immune response studies

Key Characteristics

Human neuroblastoma cell lineMYCN amplificationChromosomal abnormalitiesDrug resistance mechanismsVitamin E sensitivityHLA type variability
Generated on 6/15/2025

Basic Information

Database IDCVCL_0531
SpeciesHomo sapiens (Human)
Tissue SourceBone marrow[UBERON:UBERON_0002371]

Donor Information

Age4
Age CategoryPediatric
SexFemale

Disease Information

DiseaseNeuroblastoma
LineagePeripheral Nervous System
SubtypeNeuroblastoma
OncoTree CodeNBL

DepMap Information

Source TypeATCC
Source IDACH-000149_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleALKp.Phe1174Leu (c.3522C>A)UnspecifiedOnly detected in 5% of the cells in early passages but increase to 50% in late passagesfrom parent cell line SH-EP007
MutationSimpleNRASp.Gln61Lys (c.181C>A)UnspecifiedAcquired during resistance selection processPubMed=26214590

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D10S1248
14
D12S391
18,22
D13S317
11
D16S539
8,13
D18S51
13,16
D19S433
13,14
D1S1656
12
D21S11
31,31.2
D22S1045
16,17
D2S1338
17,19
D2S441
11,11.3
D3S1358
15,16
D5S818
12
D7S820
7,10
D8S1179
15
FGA
23.2,24
Penta D
10,12
Penta E
7,11
TH01
7,10
TPOX
8,11
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Dynamic DNA methylation across diverse human cell lines and tissues.

Crawford G.E., Absher D.M., Wold B.J., Myers R.M.

Genome Res. 23:555-567(2013).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines.

Hart L.S., Dent M.H., Fortina P., Reynolds C.P., Maris J.M.

Sci. Data 4:170033-170033(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Testing of SNS-032 in a panel of human neuroblastoma cell lines with acquired resistance to a broad range of drugs.

Fichtner I., Ghafourian T., Westermann F., Cinatl J. Jr.

Transl. Oncol. 6:685-696(2013).

Neuroblastoma.";

Thiele C.J.

(In book chapter) Human cell culture. Vol. 1. Cancer cell lines part 1; Masters J.R.W., Palsson B.O. (eds.); pp.21-53; Kluwer Academic Publishers; New York; USA (1999).

Chromosome abnormalities in human tumor cells in culture.";

Biedler J.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.359-394; Springer; New York; USA (1975).

Homogeneously staining regions and double minute chromosomes, prevalent cytogenetic abnormalities of human neuroblastoma cells.

Biedler J.L., Meyers M.B., Spengler B.A.

(In book chapter) Advances in cellular neurobiology, Vol. 4; Fedoroff S., Hertz L. (eds.); pp.267-307; Academic Press; New York; USA (1983).

Tumor cell lines of the peripheral nervous system.";

Israel M.A., Thiele C.J.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.43-78; Academic Press; New York; USA (1994).

Vitamin E and human neuroblastoma.";

Helson L., Verma M., Helson C.

(In book chapter) Modulation and mediation of cancer by vitamins; Meyskens F.L., Prasad K.N. (eds.); pp.258-265; Karger; Basel; Switzerland (1983).

Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones.

Biedler J.L., Roffler-Tarlov S., Schachner M., Freedman L.S.

Cancer Res. 38:3751-3757(1978).

A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lives in culture.

Biedler J.L., Spengler B.A.

J. Natl. Cancer Inst. 57:683-695(1976).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Chromosomal aberrations in human neuroblastomas.";

Brodeur G.M., Sekhon G.S., Goldstein M.N.

Cancer 40:2256-2263(1977).

Differentiation-related expression of adhesion molecules and receptors on human neuroblastoma tissues, cell lines and variants.

Gross N., Favre S., Beck D., Meyer M.

Int. J. Cancer 52:85-91(1992).

Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages.

Ciccarone V.C., Spengler B.A., Meyers M.B., Biedler J.L., Ross R.A.

Cancer Res. 49:219-225(1989).

Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A.

Preis P.N., Saya H., Nadasdi L., Hochhaus G., Levin V.A., Sadee W.

Cancer Res. 48:6530-6534(1988).

Human neuroblastoma cells and 13-cis-retinoic acid.";

Helson L., Helson C.

J. Neurooncol. 3:39-41(1985).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture.

Biedler J.L., Helson L., Spengler B.A.

Cancer Res. 33:2643-2652(1973).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Determination of cell surface membrane antigens common to both human neuroblastoma and leukemia-lymphoma cell lines by a panel of 38 monoclonal antibodies.

Minowada J.

J. Natl. Cancer Inst. 73:51-57(1984).

Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour.

Gilbert F., Brodeur G.M., Goldstein M.N., Trent J.M.

Nature 305:245-248(1983).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Selective toxicity of 6-hydroxydopamine and ascorbate for human neuroblastoma in vitro: a model for clearing marrow prior to autologous transplant.

Reynolds C.P., Reynolds D.A., Frenkel E.P., Smith R.G.

Cancer Res. 42:1331-1336(1982).

Deletion mapping in neuroblastoma cell lines suggests two distinct tumor suppressor genes in the 1p35-36 region, only one of which is associated with N-myc amplification.

Speleman F., Versteeg R.

Oncogene 10:291-297(1995).

EWS-erg and EWS-Fli1 fusion transcripts in Ewing's sarcoma and primitive neuroectodermal tumors with variant translocations.

Nycum L.M., Emanuel B.S., Evans G.A.

J. Clin. Invest. 94:489-496(1994).

Activity assays of nine heterogeneous promoters in neural and other cultured cells.

Miyazaki J.-i., Bothwell M., Martin G.M.

In Vitro Cell. Dev. Biol. Anim. 30:300-305(1994).

Neurofibromatosis type 1 gene mutations in neuroblastoma.";

Gusella J.F., Bernards A.

Nat. Genet. 3:62-66(1993).

Immunostaining of the p30/32MIC2 antigen and molecular detection of EWS rearrangements for the diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumor.

Lollini P.-L., Picci P., Bertoni F., Baldini N.

Hum. Pathol. 27:408-416(1996).

The p16 and p18 tumor suppressor genes in neuroblastoma: implications for drug resistance.

Diccianni M.B., Chau L.S., Batova A., Vu T.Q., Yu A.L.-T.

Cancer Lett. 104:183-192(1996).

Acute and persistent infection of human neural cell lines by human coronavirus OC43.

Talbot P.J.

J. Virol. 73:3338-3350(1999).

Frequency of radiation-induced micronuclei in neuronal cells does not correlate with clonogenic survival.

Akudugu J.M., Slabbert J.P., Serafin A.M., Bohm L.

Radiat. Res. 153:62-67(2000).

Combined M-FISH and CGH analysis allows comprehensive description of genetic alterations in neuroblastoma cell lines.

Salwen H.R., Laureys G., Manoel N., De Paepe A., Speleman F.

Genes Chromosomes Cancer 32:126-135(2001).

PPM1D is a potential target for 17q gain in neuroblastoma.";

Sugimoto T., Inazawa J.

Cancer Res. 63:1876-1883(2003).

Expression profiles and clinical relationships of ID2, CDKN1B, and CDKN2A in primary neuroblastoma.

Gebauer S., Yu A.L.-T., Omura-Minamisawa M., Batova A., Diccianni M.B.

Genes Chromosomes Cancer 41:297-308(2004).

High-resolution detection and mapping of genomic DNA alterations in neuroblastoma.

Maris J.M.

Genes Chromosomes Cancer 43:390-403(2005).

Mutations in PIK3CA are infrequent in neuroblastoma.";

Dam V., Morgan B.T., Mazanek P., Hogarty M.D.

BMC Cancer 6:177.1-177.10(2006).

Identification of ALK as a major familial neuroblastoma predisposition gene.

Maris J.M.

Nature 455:930-935(2008).

Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y.

Nishida Y., Adati N., Ozawa R., Maeda A., Sakaki Y., Takeda T.

BMC Res. Notes 1:95.1-95.11(2008).

Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma.

Amiel J., Delattre O.

Nature 455:967-970(2008).

Oncogenic mutations of ALK kinase in neuroblastoma.";

Hayashi Y., Mano H., Ogawa S.

Nature 455:971-974(2008).

PEA15 impairs cell migration and correlates with clinical features predicting good prognosis in neuroblastoma.

Opoku-Ansah J., Wada R.K., Bachmann A.S., Ramos J.W.

Int. J. Cancer 131:1556-1568(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).