SK-OV-3Homo sapiens (Human)Cancer cell line
Also known as: SKOV-3, SK-OV3, SK.OV.3, SKOV3, Skov3, SKO3, SKOV3 (S), SKVO3 (Occasionally.), SCOV3 (Occasionally.), SCOV-3 (Occasionally.)
Quick Overview
Human ovarian cancer cell line used in cancer research and drug development.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0532 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Ascites[UBERON:UBERON_0007795] |
Donor Information
Age | 64 |
---|---|
Age Category | Adult |
Sex | Female |
Race | caucasian |
Disease Information
Disease | Ovarian serous cystadenocarcinoma |
---|---|
Lineage | Ovary/Fallopian Tube |
Subtype | Serous Ovarian Cancer |
OncoTree Code | SOC |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000811_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | APC | p.Thr1556Leufs*9 (c.4666delA) | Heterozygous | - | from parent cell line SK-OV-3 |
MutationSimple | FBXW7 | p.Arg505Leu (c.1514G>T) | Heterozygous | - | from parent cell line SK-OV-3 |
MutationSimple | PIK3CA | p.His1047Arg (c.3140A>G) | Unspecified | - | PubMed=25926053, PubMed=20570890 |
MutationSimple | TP53 | p.Ser90Profs*33 (c.267delC) | Homozygous | - | from parent cell line SK-OV-3 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities.
Long S.B.T., Vonguyen L., Chen D.J., Gray J.W., Chen F.-Q.
Oncol. Rep. 23:1021-1026(2010).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
CPEB4-promoted paclitaxel resistance in ovarian cancer in vitro relies on translational regulation of CSAG2.
Zhang Y.-Q., Gan H.-Y., Zhao F., Ma X.-M., Xie X.-F., Huang R., Zhao J.
Front. Pharmacol. 11:600994.1-600994.10(2020).
Identification of ovarian high-grade serous carcinoma cell lines that show estrogen-sensitive growth as xenografts in immunocompromised mice.
Herodek B., Arteagabeitia A.B., Valenti M., Kirkin V.
Sci. Rep. 10:10799-10799(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.
Velculescu V.E., Scharpf R.B.
Cell Rep. 25:2617-2633(2018).
Interrogation of functional cell-surface markers identifies CD151 dependency in high-grade serous ovarian cancer.
Drapkin R.I., Ailles L., Mes-Masson A.-M., Rottapel R.
Cell Rep. 18:2343-2358(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
Characterization of ovarian cancer cell lines as in vivo models for preclinical studies.
Noonan A.M., Annunziata C.M.
Gynecol. Oncol. 142:332-340(2016).
The effectiveness of chemotherapy and electrochemotherapy on ovarian cell lines in vitro.
Deszcz I., Zalewski J., Kulbacka J.
Neoplasma 63:450-455(2016).
Isolation and characterization of side population cells from the human ovarian cancer cell line SK-OV-3.
Ruan Z.-Y., Liu J.-H., Kuang Y.-P.
Exp. Ther. Med. 10:2071-2078(2015).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Metabolic signatures differentiate ovarian from colon cancer cell lines.
Suhre K., Rafii A.
J. Transl. Med. 13:223.1-223.12(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Profiling of actionable gene alterations in ovarian cancer by targeted deep sequencing.
Ichikawa H., Shibata T., Yokota J., Okamoto A., Kohno T.
Int. J. Oncol. 46:2389-2398(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes.
Helleman J.
PLoS ONE 9:E103988-E103988(2014).
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome.
Kislinger T.
Biochem. Biophys. Res. Commun. 445:694-701(2014).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).
Type-specific cell line models for type-specific ovarian cancer research.
Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.
PLoS ONE 8:E72162-E72162(2013).
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
Cancer Res. 73:4372-4382(2013).
Evaluating cell lines as tumour models by comparison of genomic profiles.
Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.
Nat. Commun. 4:2126.1-2126.10(2013).
BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.
Mills G.B., Hennessy B.T.
Mol. Oncol. 7:567-579(2013).
DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.
Lessey B.A., Jordan V.C., Bradford A.P.
Gynecol. Oncol. 127:241-248(2012).
Clinicopathologic and biological analysis of PIK3CA mutation in ovarian clear cell carcinoma.
Miyazaki K.
Hum. Pathol. 43:2197-2206(2012).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
Rottapel R., Neel B.G., Moffat J.
Cancer Discov. 2:172-189(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
Kong D.-X., Yamori T.
Bioorg. Med. Chem. 20:1947-1951(2012).
Genomic complexity and AKT dependence in serous ovarian cancer.";
Taylor B.S., Sander C., Rosen N., Levine D.A., Solit D.B.
Cancer Discov. 2:56-67(2012).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
Therapeutic reactivation of mutant p53 protein by quinazoline derivatives.
Ding A., Baguley B.C.
Invest. New Drugs 30:2035-2045(2012).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
Fogh J., Fogh J.M., Orfeo T.
J. Natl. Cancer Inst. 59:221-226(1977).
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
Fogh J., Wright W.C., Loveless J.D.
J. Natl. Cancer Inst. 58:209-214(1977).
Comparison of cellular accumulation and cytotoxicity of cisplatin with that of tetraplatin and amminedibutyratodichloro(cyclohexylamine)platinum(IV) (JM221) in human ovarian carcinoma cell lines.
Mistry P., Kelland L.R., Loh S.Y., Abel G., Murrer B.A., Harrap K.R.
Cancer Res. 52:6188-6193(1992).
The relationships between glutathione, glutathione-S-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines.
Mistry P., Kelland L.R., Abel G., Sidhar S., Harrap K.R.
Br. J. Cancer 64:215-220(1991).
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
J. Natl. Cancer Inst. 83:757-766(1991).
Biological properties of ten human ovarian carcinoma cell lines: calibration in vitro against four platinum complexes.
Harrap K.R.
Br. J. Cancer 59:527-534(1989).
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Cancer Res. 48:589-601(1988).
Establishment and characterisation of three new human ovarian carcinoma cell lines and initial evaluation of their potential in experimental chemotherapy studies.
Shellard S.A., Rupniak H.T.
Int. J. Cancer 39:219-225(1987).
Comparative properties of five human ovarian adenocarcinoma cell lines.
Buick R.N., Pullano R., Trent J.M.
Cancer Res. 45:3668-3676(1985).
Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).
Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
Rousset M., Zweibaum A., Fogh J.
Cancer Res. 41:1165-1170(1981).
Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.
van Zijl P.L.
Eur. J. Cancer 31A:230-237(1995).
p53 gene mutation analysis and antisense-mediated growth inhibition of human ovarian carcinoma cell lines.
Skilling J.S., Squatrito R.C., Connor J.P., Niemann T., Buller R.E.
Gynecol. Oncol. 60:72-80(1996).
Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines.
Johnson S.W., Laub P.B., Beesley J.S., Ozols R.F., Hamilton T.C.
Cancer Res. 57:850-856(1997).
Retinoic acid receptor beta expression and growth inhibition of gynecologic cancer cells by the synthetic retinoid N-(4-hydroxyphenyl) retinamide.
Sabichi A.L., Hendricks D.T., Bober M.A., Birrer M.J.
J. Natl. Cancer Inst. 90:597-605(1998).
Mutation of the PTEN tumor suppressor gene is not a feature of ovarian cancers.
Berchuck A., Futreal P.A.
Gynecol. Oncol. 70:13-16(1998).
Expression of human estrogen receptor-alpha and -beta, progesterone receptor, and androgen receptor mRNA in normal and malignant ovarian epithelial cells.
Lau K.-M., Mok S.C., Ho S.-M.
Proc. Natl. Acad. Sci. U.S.A. 96:5722-5727(1999).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
Altered expression of BRCA1, BRCA2, and a newly identified BRCA2 exon 12 deletion variant in malignant human ovarian, prostate, and breast cancer cell lines.
Rauh-Adelmann C., Lau K.-M., Sabeti N., Long J.P., Mok S.C., Ho S.-M.
Mol. Carcinog. 28:236-246(2000).
Short tandem repeat profiling provides an international reference standard for human cell lines.
Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).
Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines.
Moberg K.H., Bell D.W., Pronk-Wahrer D.C.R., Haber D.A., Hariharan I.K.
Nature 413:311-316(2001).
A formalin-fixed, paraffin-processed cell line standard for quality control of immunohistochemical assay of HER-2/neu expression in breast cancer.
Dodson A.R., Navabi H., Miller K.D., Balaton A.J.
Am. J. Clin. Pathol. 117:81-89(2002).
Multicolor spectral karyotyping of serous ovarian adenocarcinoma.";
Rao P.H., Harris C.P., Lu X.-Y., Li X.-N., Mok S.C., Lau C.C.
Genes Chromosomes Cancer 33:123-132(2002).
CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential.
Auersperg N., Birrer M.J.
Oncogene 21:4435-4447(2002).
Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.
Takayama M., Sato A., Inazawa J.
Jpn. J. Cancer Res. 93:1114-1122(2002).
Gene expression patterns in ovarian carcinomas.";
Sikic B.I.
Mol. Biol. Cell 14:4376-4386(2003).
HLA class I and II genotype of the NCI-60 cell lines.";
Morse H.C. 3rd, Stroncek D., Marincola F.M.
J. Transl. Med. 3:11.1-11.8(2005).
Selenium binding protein 1 in ovarian cancer.";
Bandera C.A., Welch W.R., Berkowitz R.S., Mok S.C., Ng S.-W.
Int. J. Cancer 118:2433-2440(2006).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
Genetic changes in the evolution of multidrug resistance for cultured human ovarian cancer cells.
Lam W.L., Ling V.
Genes Chromosomes Cancer 46:1069-1079(2007).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).