SK-OV-3Homo sapiens (Human)Cancer cell line

Also known as: SKOV-3, SK-OV3, SK.OV.3, SKOV3, Skov3, SKO3, SKOV3 (S), SKVO3 (Occasionally.), SCOV3 (Occasionally.), SCOV-3 (Occasionally.)

🤖 AI SummaryBased on 15 publications

Quick Overview

Human ovarian cancer cell line used in cancer research and drug development.

Detailed Summary

SK-OV-3 is a human ovarian cancer cell line derived from a serous carcinoma. It is widely used in research for studying ovarian cancer biology, drug screening, and therapeutic development. The cell line has been characterized in multiple studies for its genetic and molecular profiles, including mutations in TP53 and other key oncogenes. It is utilized in various experimental models, such as xenografts in immunocompromised mice, to evaluate tumor growth and response to treatments. Research on SK-OV-3 has contributed to understanding the mechanisms of chemotherapy resistance and the role of specific genetic alterations in cancer progression.

Research Applications

Cancer biology researchDrug screening and developmentTherapeutic target identificationXenograft models for tumor growth studiesChemotherapy resistance mechanisms

Key Characteristics

TP53 mutationSerous carcinoma originUsed in in vivo and in vitro studiesExpression of specific oncogenes and tumor markers
Generated on 6/15/2025

Basic Information

Database IDCVCL_0532
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age64
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseOvarian serous cystadenocarcinoma
LineageOvary/Fallopian Tube
SubtypeSerous Ovarian Cancer
OncoTree CodeSOC

DepMap Information

Source TypeATCC
Source IDACH-000811_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleAPCp.Thr1556Leufs*9 (c.4666delA)Heterozygous-from parent cell line SK-OV-3
MutationSimpleFBXW7p.Arg505Leu (c.1514G>T)Heterozygous-from parent cell line SK-OV-3
MutationSimplePIK3CAp.His1047Arg (c.3140A>G)Unspecified-PubMed=25926053, PubMed=20570890
MutationSimpleTP53p.Ser90Profs*33 (c.267delC)Homozygous-from parent cell line SK-OV-3

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D10S1248
13,16,17
D12S391
21,22
D13S317
8,11
D16S539
12
D18S51
16,17
D19S433
14,14.2
D1S1656
11,17.3
D21S11
30,31,31.2
D22S1045
11,16
D2S1338
18,23
D2S441
10,11.3
D3S1358
13,14
D5S818
11
D7S820
13,14
D8S1179
14,15
FGA
23,24,25
Penta D
12,13
Penta E
5,13
TH01
9,9.3
TPOX
8,11
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities.

Long S.B.T., Vonguyen L., Chen D.J., Gray J.W., Chen F.-Q.

Oncol. Rep. 23:1021-1026(2010).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

CPEB4-promoted paclitaxel resistance in ovarian cancer in vitro relies on translational regulation of CSAG2.

Zhang Y.-Q., Gan H.-Y., Zhao F., Ma X.-M., Xie X.-F., Huang R., Zhao J.

Front. Pharmacol. 11:600994.1-600994.10(2020).

Identification of ovarian high-grade serous carcinoma cell lines that show estrogen-sensitive growth as xenografts in immunocompromised mice.

Herodek B., Arteagabeitia A.B., Valenti M., Kirkin V.

Sci. Rep. 10:10799-10799(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.

Velculescu V.E., Scharpf R.B.

Cell Rep. 25:2617-2633(2018).

Interrogation of functional cell-surface markers identifies CD151 dependency in high-grade serous ovarian cancer.

Drapkin R.I., Ailles L., Mes-Masson A.-M., Rottapel R.

Cell Rep. 18:2343-2358(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Characterization of ovarian cancer cell lines as in vivo models for preclinical studies.

Noonan A.M., Annunziata C.M.

Gynecol. Oncol. 142:332-340(2016).

The effectiveness of chemotherapy and electrochemotherapy on ovarian cell lines in vitro.

Deszcz I., Zalewski J., Kulbacka J.

Neoplasma 63:450-455(2016).

Isolation and characterization of side population cells from the human ovarian cancer cell line SK-OV-3.

Ruan Z.-Y., Liu J.-H., Kuang Y.-P.

Exp. Ther. Med. 10:2071-2078(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolic signatures differentiate ovarian from colon cancer cell lines.

Suhre K., Rafii A.

J. Transl. Med. 13:223.1-223.12(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Profiling of actionable gene alterations in ovarian cancer by targeted deep sequencing.

Ichikawa H., Shibata T., Yokota J., Okamoto A., Kohno T.

Int. J. Oncol. 46:2389-2398(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes.

Helleman J.

PLoS ONE 9:E103988-E103988(2014).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome.

Kislinger T.

Biochem. Biophys. Res. Commun. 445:694-701(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Type-specific cell line models for type-specific ovarian cancer research.

Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.

PLoS ONE 8:E72162-E72162(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Evaluating cell lines as tumour models by comparison of genomic profiles.

Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.

Nat. Commun. 4:2126.1-2126.10(2013).

BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

Mills G.B., Hennessy B.T.

Mol. Oncol. 7:567-579(2013).

DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

Lessey B.A., Jordan V.C., Bradford A.P.

Gynecol. Oncol. 127:241-248(2012).

Clinicopathologic and biological analysis of PIK3CA mutation in ovarian clear cell carcinoma.

Miyazaki K.

Hum. Pathol. 43:2197-2206(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Genomic complexity and AKT dependence in serous ovarian cancer.";

Taylor B.S., Sander C., Rosen N., Levine D.A., Solit D.B.

Cancer Discov. 2:56-67(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Therapeutic reactivation of mutant p53 protein by quinazoline derivatives.

Ding A., Baguley B.C.

Invest. New Drugs 30:2035-2045(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Comparison of cellular accumulation and cytotoxicity of cisplatin with that of tetraplatin and amminedibutyratodichloro(cyclohexylamine)platinum(IV) (JM221) in human ovarian carcinoma cell lines.

Mistry P., Kelland L.R., Loh S.Y., Abel G., Murrer B.A., Harrap K.R.

Cancer Res. 52:6188-6193(1992).

The relationships between glutathione, glutathione-S-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines.

Mistry P., Kelland L.R., Abel G., Sidhar S., Harrap K.R.

Br. J. Cancer 64:215-220(1991).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Biological properties of ten human ovarian carcinoma cell lines: calibration in vitro against four platinum complexes.

Harrap K.R.

Br. J. Cancer 59:527-534(1989).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Establishment and characterisation of three new human ovarian carcinoma cell lines and initial evaluation of their potential in experimental chemotherapy studies.

Shellard S.A., Rupniak H.T.

Int. J. Cancer 39:219-225(1987).

Comparative properties of five human ovarian adenocarcinoma cell lines.

Buick R.N., Pullano R., Trent J.M.

Cancer Res. 45:3668-3676(1985).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.

van Zijl P.L.

Eur. J. Cancer 31A:230-237(1995).

p53 gene mutation analysis and antisense-mediated growth inhibition of human ovarian carcinoma cell lines.

Skilling J.S., Squatrito R.C., Connor J.P., Niemann T., Buller R.E.

Gynecol. Oncol. 60:72-80(1996).

Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines.

Johnson S.W., Laub P.B., Beesley J.S., Ozols R.F., Hamilton T.C.

Cancer Res. 57:850-856(1997).

Retinoic acid receptor beta expression and growth inhibition of gynecologic cancer cells by the synthetic retinoid N-(4-hydroxyphenyl) retinamide.

Sabichi A.L., Hendricks D.T., Bober M.A., Birrer M.J.

J. Natl. Cancer Inst. 90:597-605(1998).

Mutation of the PTEN tumor suppressor gene is not a feature of ovarian cancers.

Berchuck A., Futreal P.A.

Gynecol. Oncol. 70:13-16(1998).

Expression of human estrogen receptor-alpha and -beta, progesterone receptor, and androgen receptor mRNA in normal and malignant ovarian epithelial cells.

Lau K.-M., Mok S.C., Ho S.-M.

Proc. Natl. Acad. Sci. U.S.A. 96:5722-5727(1999).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Altered expression of BRCA1, BRCA2, and a newly identified BRCA2 exon 12 deletion variant in malignant human ovarian, prostate, and breast cancer cell lines.

Rauh-Adelmann C., Lau K.-M., Sabeti N., Long J.P., Mok S.C., Ho S.-M.

Mol. Carcinog. 28:236-246(2000).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines.

Moberg K.H., Bell D.W., Pronk-Wahrer D.C.R., Haber D.A., Hariharan I.K.

Nature 413:311-316(2001).

A formalin-fixed, paraffin-processed cell line standard for quality control of immunohistochemical assay of HER-2/neu expression in breast cancer.

Dodson A.R., Navabi H., Miller K.D., Balaton A.J.

Am. J. Clin. Pathol. 117:81-89(2002).

Multicolor spectral karyotyping of serous ovarian adenocarcinoma.";

Rao P.H., Harris C.P., Lu X.-Y., Li X.-N., Mok S.C., Lau C.C.

Genes Chromosomes Cancer 33:123-132(2002).

CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential.

Auersperg N., Birrer M.J.

Oncogene 21:4435-4447(2002).

Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.

Takayama M., Sato A., Inazawa J.

Jpn. J. Cancer Res. 93:1114-1122(2002).

Gene expression patterns in ovarian carcinomas.";

Sikic B.I.

Mol. Biol. Cell 14:4376-4386(2003).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Selenium binding protein 1 in ovarian cancer.";

Bandera C.A., Welch W.R., Berkowitz R.S., Mok S.C., Ng S.-W.

Int. J. Cancer 118:2433-2440(2006).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Genetic changes in the evolution of multidrug resistance for cultured human ovarian cancer cells.

Lam W.L., Ling V.

Genes Chromosomes Cancer 46:1069-1079(2007).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).