SK-UT-1Homo sapiens (Human)Cancer cell line

Also known as: Skut1, SKUT1, SKUT-1, SK UT 1

🤖 AI SummaryBased on 11 publications

Quick Overview

Human uterine leiomyosarcoma cell line for cancer research.

Detailed Summary

The SK-UT-1 cell line is a human uterine leiomyosarcoma cell line derived from a primary tumor. It is widely used in cancer research for studying the molecular mechanisms of sarcomas and evaluating drug responses. This cell line has been characterized in multiple studies, including its genetic profile, sensitivity to various anticancer agents, and its utility in understanding tumor biology. Research involving SK-UT-1 has contributed to identifying potential therapeutic targets and biomarkers for sarcoma treatment. The cell line is also utilized in studies related to cell surface antigens and their role in cancer progression.

Research Applications

Cancer researchDrug sensitivity profilingMolecular mechanism studiesTherapeutic target identification

Key Characteristics

Uterine originLeiomyosarcomaUsed in drug response studies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0533
SpeciesHomo sapiens (Human)
Tissue SourceUterus[UBERON:UBERON_0000995]

Donor Information

Age75
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseLeiomyosarcoma of the corpus uteri
LineageUterus
SubtypeUterine Leiomyosarcoma
OncoTree CodeULMS

DepMap Information

Source TypeATCC
Source IDACH-000939_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg248Gln (c.743G>A)UnspecifiedSomatic mutation acquired during proliferationPubMed=20575032
MutationSimpleTP53p.Arg175His (c.524G>A)UnspecifiedSomatic mutation acquired during proliferationfrom parent cell line YCC-3
MutationSimpleRB1p.Val654Cysfs*4 (c.1959delA)Homozygous-from parent cell line SK-UT-1
MutationSimplePTENp.Asn323fs*2 (c.968_969insA)Heterozygous-from parent cell line SK-UT-1
MutationSimplePTENp.Thr319fs*1 (c.955_958delACTT) (p.VL317fs) (V317fs*3)Heterozygous-from parent cell line SK-UT-1
MutationSimplePIK3CAp.Arg88Gln (c.263G>A)Heterozygous-Unknown, Unknown
MutationSimpleAPCp.Thr1556Leufs*9 (c.4666delA)Heterozygous-from parent cell line SK-OV-3
MutationSimpleAPCp.Gln1096Ter (c.3286C>T)Heterozygous-from parent cell line SK-UT-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D13S317
13
D16S539
13,14
D18S51
11,16
D19S433
12,13
D21S11
29,32.2
D2S1338
18,19,21
D3S1358
15,16
D5S818
10,11
D7S820
9,10
D8S1179
13,15
FGA
22,24
Penta D
11,14,15
Penta E
17
TH01
7
TPOX
8
vWA
15,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Sister chromatid exchange and genomic instability in soft tissue sarcomas: potential implications for response to DNA-damaging treatments.

Salawu A., Wright K., Al-Kathiri A., Wyld L., Reed M.W.R., Sisley K.

Sarcoma 2018:3082526.1-3082526.8(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.

Harris E., Monks A., Morris J.

Mol. Cancer Ther. 14:2452-2462(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Mutation of the p53 gene in human soft tissue sarcomas: association with abnormalities of the RB1 gene.

Fletcher C.D.M., Ball A.B.S., Thomas M., Gusterson B.A., Cooper C.S.

Oncogene 5:1297-1301(1990).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

New human tumor cell lines.";

Fogh J., Trempe G.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).