SW480Homo sapiens (Human)Cancer cell line

Also known as: SW-480, SW 480, SW480E, SWH80, SW80 (Occasionally.), WE480 (Occasionally.), WE-480 (Occasionally.)

🤖 AI SummaryBased on 13 publications

Quick Overview

Human colorectal cancer cell line with KRAS mutation

Detailed Summary

SW480 is a human colorectal cancer cell line derived from a metastatic lesion. It is characterized by a KRAS mutation at codon 12, which is a common driver mutation in colorectal cancer. This cell line is widely used in research to study the molecular mechanisms of cancer progression and drug resistance. SW480 cells are also utilized in studies investigating the role of KRAS mutations in tumor development and response to targeted therapies. The cell line has been employed in various studies to understand the genetic and epigenetic alterations associated with colorectal cancer.

Research Applications

Molecular mechanisms of cancer progressionDrug resistance studiesKRAS mutation analysisTumor development and targeted therapy response

Key Characteristics

KRAS mutation at codon 12Metastatic originUsed in drug sensitivity studies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0546
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age51
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseColon adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000842_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleAPCp.Gln1338Ter (c.4012C>T)Homozygous-from parent cell line SW620
MutationSimpleKRASp.Gly12Val (c.35G>T)HeterozygousAcquiredUnknown, Unknown
MutationSimpleTP53p.Arg273His (c.818G>A)Homozygous-Unknown, PubMed=16264262
MutationSimpleTP53p.Pro309Ser (c.925C>T)Heterozygous-from parent cell line SW620

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
13,14
D10S1248
13,14
D12S391
17
D13S317
12
D16S539
13
D18S51
13
D19S433
13
D1S1656
13,14
D21S11
30,30.2
D22S1045
16
D2S1338
17,24
D2S441
10,15
D3S1358
15
D5S818
13
D7S820
8
D8S1179
13
FGA
24
Penta D
9,15
Penta E
10
TH01
8
TPOX
11
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

Comparison of different colorectal cancer with liver metastases models using six colorectal cancer cell lines.

Xu Y.-T., Zhang L., Wang Q.-L., Zheng M.-J.

Pathol. Oncol. Res. 26:2177-2183(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Gene expression profile of cancer stem-like cells in the SW480 colon adenocarcinoma cell line.

Wang Y.-Y., Zhou L., Qing Q., Li Y.-F., Li L.-X., Dong X.-Y., Xiao B.

Oncol. Rep. 42:386-398(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Proteomic characterization of transcription and splicing factors associated with a metastatic phenotype in colorectal cancer.

Calvino E., Fernandez-Acenero M.J., Casal J.I.

J. Proteome Res. 17:252-264(2018).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Phosphoproteomics of colon cancer metastasis: comparative mass spectrometric analysis of the isogenic primary and metastatic cell lines SW480 and SW620.

Schunter A.J., Yue X.-S., Hummon A.B.

Anal. Bioanal. Chem. 409:1749-1763(2017).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.

Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.

J. Proteomics 127:247-258(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Comprehensive glycomics comparison between colon cancer cell cultures and tumours: implications for biomarker studies.

Molloy M.P., Packer N.H.

J. Proteomics 108:146-162(2014).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

Epigenetic and genetic features of 24 colon cancer cell lines.";

Hektoen M., Lind G.E., Lothe R.A.

Oncogenesis 2:e71.1-e71.8(2013).

Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g.

Grade M., Gaedcke J.

Radiother. Oncol. 108:451-457(2013).

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

Orphanides G., French T., Wessels L.F.A.

BMC Med. Genomics 5:66.1-66.15(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b.

Peng J.-Y., Chen H.-Q., Zhou Y.-K., Liu W.-J., Qin H.-L.

J. Cell. Mol. Med. 15:1941-1954(2011).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies.

Herlyn M., Steplewski Z., Herlyn D., Koprowski H.

Proc. Natl. Acad. Sci. U.S.A. 76:1438-1442(1979).

Detection and analysis of a glucose 6-phosphate dehydrogenase phenotype B cell line contamination.

Fogh H., Fogh J.

J. Natl. Cancer Inst. 63:635-645(1979).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Analysis of established human carcinoma cell lines for lymphoreticular-associated membrane receptors.

Kerbel R.S., Pross H.F., Leibovitz A.

Int. J. Cancer 20:673-679(1977).

Classification of human colorectal adenocarcinoma cell lines.";

Mabry N.D.

Cancer Res. 36:4562-4569(1976).

Growth stimulation of a human colorectal carcinoma cell line by interleukin-1 and -6 and antagonistic effects of transforming growth factor beta 1.

Lorenzoni M., Givel J.-C., Odartchenko N.

Eur. J. Cancer 28A:1894-1899(1992).

Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells.

Ohnishi Y., Xiao H.-Y., Nagai Y., Takagi H.

Jpn. J. Cancer Res. 82:1428-1435(1991).

Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines.

Chantret I., Barbat A., Dussaulx E., Brattain M.G., Zweibaum A.

Cancer Res. 48:1936-1942(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Karyotype consistency in human colorectal carcinoma cell lines established in vitro.

Chen T.-R., Hay R.J., Macy M.L.

Cancer Genet. Cytogenet. 6:93-117(1982).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.

Steele G., Summerhayes I.C.

Oncogene 11:647-652(1995).

Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer.

Willson J.K.V., Veigl M.L., Sedwick W.D., Markowitz S.D.

Oncogene 10:33-37(1995).

Liver metastases with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production.

Tibbetts L.M., Doremus C.M., Tzanakakis G.N., Vezeridis M.P.

Cancer 71:315-321(1993).

Radio-induced modulation of transforming growth factor beta1 sensitivity in a p53 wild-type human colorectal-cancer cell line.

Suardet L., Li C., Little J.B.

Int. J. Cancer 68:126-131(1996).

Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.

Thomas G., Hamelin R.

Oncogene 13:2727-2730(1996).

BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.

Hamelin R.

Cancer Res. 57:300-303(1997).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Beta-catenin mutations in cell lines established from human colorectal cancers.

Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).

Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53.

Veigl M.L., Willson J.K.V., Schwartz S., Markowitz S.D.

Oncogene 17:719-725(1998).

Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.

Neumann T., Jauho A., Auer G., Ried T.

Genes Chromosomes Cancer 27:183-190(2000).

Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.

Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.

Eur. J. Cancer 35:1724-1729(1999).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Spectral karyotyping of the human colon cancer cell lines SW480 and SW620.

Luehrs H., Scheppach W., Schmid M.

Cytogenet. Cell Genet. 88:145-152(2000).

Validation of a model of colon cancer progression.";

Tsokos M.G., Stamp G.W.H., Stetler-Stevenson W.G.

J. Pathol. 192:446-454(2000).

Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.

Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.

Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.

Hamelin R.

Oncogene 20:5025-5032(2001).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Garcia-Foncillas J.

Mol. Cancer 5:29.1-29.10(2006).

Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.

Camps J., McNeil N.E., Difilippantonio M.J., Ried T.

Genes Chromosomes Cancer 49:204-223(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).