SaOS-2Homo sapiens (Human)Cancer cell line

Also known as: SAOS-2, Saos-2, SAOS 2, Saos 2, Saos2, SaOs2, SAOS2, Sarcoma OSteogenic-2, SaOS, SAOS

🤖 AI SummaryBased on 15 publications

Quick Overview

Human osteosarcoma cell line with known genetic and epigenetic alterations.

Detailed Summary

SaOS-2 is a human osteosarcoma cell line derived from a primary tumor. It is widely used in cancer research due to its well-characterized genetic and epigenetic profiles. The cell line exhibits complex genomic alterations, including mutations in the TP53 gene and amplifications of the MDM2 gene. These alterations contribute to its aggressive behavior and resistance to certain therapies. SaOS-2 is utilized in studies investigating tumor biology, drug screening, and the mechanisms of metastasis. Its genetic instability and diverse molecular characteristics make it a valuable model for understanding osteosarcoma progression and developing targeted therapies.

Research Applications

Genetic and epigenetic studiesDrug screeningMetastasis researchTumor biology investigation

Key Characteristics

TP53 mutationMDM2 amplificationGenomic instabilityHigh metastatic potential
Generated on 6/15/2025

Basic Information

Database IDCVCL_0548
SpeciesHomo sapiens (Human)
Tissue SourceBone[UBERON:UBERON_0002481]

Donor Information

Age11
Age CategoryPediatric
SexFemale
Racecaucasian

Disease Information

DiseaseOsteosarcoma
LineageBone
SubtypeOsteosarcoma
OncoTree CodeOS

DepMap Information

Source TypeATCC
Source IDACH-000410_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionTP53-Homozygous2 out of 3 copiesfrom parent cell line HL-60

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
12,13
D16S539
12,13
D18S51
15
D19S433
13
D21S11
28,30
D2S1338
18
D3S1358
14,18
D5S818
12
D7S820
8,10
D8S1179
10,12
FGA
22,25
Penta D
11,12
Penta E
14,19
SE33
19,20
TH01
6,9
TPOX
8
vWA
18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

p53 functions as a cell cycle control protein in osteosarcomas.";

Bressac B., Ozturk M., Baker S.J., Vogelstein B., Friend S.H.

Mol. Cell. Biol. 10:5772-5781(1990).

Rearrangement of the p53 gene in human osteogenic sarcomas.";

Masuda H., Miller C., Koeffler H.P., Battifora H.A., Cline M.J.

Proc. Natl. Acad. Sci. U.S.A. 84:7716-7719(1987).

Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties.

Bar-Shavit Z., Shull S., Mann K., Rodan G.A.

Cancer Res. 47:4961-4966(1987).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

Immunostaining of the p30/32MIC2 antigen and molecular detection of EWS rearrangements for the diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumor.

Lollini P.-L., Picci P., Bertoni F., Baldini N.

Hum. Pathol. 27:408-416(1996).

A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies.

Jia S.-F., Worth L.L., Kleinerman E.S.

Clin. Exp. Metastasis 17:501-506(1999).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Chromosomal alterations in osteosarcoma cell lines revealed by comparative genomic hybridization and multicolor karyotyping.

Poremba C.

Cancer Genet. Cytogenet. 140:145-152(2003).

Expression profiling of t(12;22) positive clear cell sarcoma of soft tissue cell lines reveals characteristic up-regulation of potential new marker genes including ERBB3.

Gabbert H.E., Poremba C.

Cancer Res. 64:3395-3405(2004).

Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts.

Milz S.

Anticancer Res. 24:3743-3748(2004).

Phenotypic instability of Saos-2 cells in long-term culture.";

Hausser H.-J., Brenner R.E.

Biochem. Biophys. Res. Commun. 333:216-222(2005).

Extreme sensitivity to Yondelis (Trabectedin, ET-743) in low passaged sarcoma cell lines correlates with mutated p53.

Tercero J.C., Piris M.A., Jimeno J.M., Carnero A.

J. Cell. Biochem. 100:339-348(2007).

Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A.

Myklebost O.

Int. J. Cancer 121:199-205(2007).

Levels of p27(kip1) determine Aplidin sensitivity.";

Diaz-Uriarte R., Aracil M., Tercero J.C., Jimeno J.M., Carnero A.

Mol. Cancer Ther. 6:1310-1316(2007).

Identification of cryptic microaberrations in osteosarcoma by high-definition oligonucleotide array comparative genomic hybridization.

Squire J.A., Zielenska M.

Cancer Genet. Cytogenet. 179:52-61(2007).

Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort.

Buerger H., Aigner T., Gabbert H.E., Poremba C.

Genes Chromosomes Cancer 49:40-51(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Functional characterization of osteosarcoma cell lines provides representative models to study the human disease.

Hogendoorn P.C.W., Llombart-Bosch A., Cleton-Jansen A.-M.

Lab. Invest. 91:1195-1205(2011).

Genetically modified T cells targeting interleukin-11 receptor alpha-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases.

Huang G.-X., Yu L., Cooper L.J.N., Hollomon M., Huls H., Kleinerman E.S.

Cancer Res. 72:271-281(2012).

Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma.

Myklebost O., Meza-Zepeda L.A.

PLoS ONE 7:E48262-E48262(2012).

A novel approach for characterizing microsatellite instability in cancer cells.

Lu Y.-H., Soong T.D., Elemento O.

PLoS ONE 8:E63056-E63056(2013).

Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis.

Aviles P., Santamaria G., Tercero J.C., Cuevas C., Carnero A.

BMC Cancer 14:281.1-281.10(2014).

Establishment and characterization of a new highly metastatic human osteosarcoma cell line derived from Saos2.

Du L., Fan Q.-M., Tu B., Yan W., Tang T.-T.

Int. J. Clin. Exp. Pathol. 7:2871-2882(2014).

Characterization of the metastatic phenotype of a panel of established osteosarcoma cells.

Luu H.H., Meltzer P.S., Khanna C.

Oncotarget 6:29469-29481(2015).

Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.

Harris E., Monks A., Morris J.

Mol. Cancer Ther. 14:2452-2462(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Positively selected enhancer elements endow osteosarcoma cells with metastatic competence.

Versteeg H.H., Stamatoyannopoulos J.A., Khanna C., Scacheri P.C.

Nat. Med. 24:176-185(2018).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).