SK-MEL-3Homo sapiens (Human)Cancer cell line

Also known as: SKMEL3, SK-Mel3, SK-MEL3, Sk-mel-3, SK-Mel-3

🤖 AI SummaryBased on 15 publications

Quick Overview

Human melanoma cell line for cancer research and drug development

Detailed Summary

SK-MEL-3 is a human melanoma cell line derived from a metastatic tumor. It is widely used in cancer research to study tumor biology, metastasis, and drug responses. The cell line has been characterized for its genetic and molecular profiles, including mutations in BRAF and other key oncogenes. Research on SK-MEL-3 has contributed to understanding the mechanisms of melanoma progression and the development of targeted therapies. Its utility in preclinical studies makes it a valuable resource for investigating potential treatments and biomarkers for melanoma.

Research Applications

Cancer researchDrug developmentTumor biology studiesMetastasis researchTargeted therapy development

Key Characteristics

Metastatic originBRAF mutationsGenetic profilingDrug response studies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0550
SpeciesHomo sapiens (Human)
Tissue SourceLymph node[UBERON:UBERON_0000029]

Donor Information

Age42
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseCutaneous melanoma
LineageSkin
SubtypeCutaneous Melanoma
OncoTree CodeSKCM

DepMap Information

Source TypeATCC
Source IDACH-000423_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg267Trp (c.799C>T)UnspecifiedSomatic mutation acquired during proliferationPubMed=28445466
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
9,10
D13S317
12,13
D16S539
11
D18S51
10,18
D19S433
17
D21S11
29,30
D2S1338
23
D3S1358
17,18
D5S818
11
D7S820
8,10
D8S1179
14
FGA
24
Penta D
9,13
Penta E
11,15
TH01
6
TPOX
8
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Functional profiling of live melanoma samples using a novel automated platform.

Schuchter L.M., Clark D.P.

PLoS ONE 7:E52760-E52760(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Genomic profiling of malignant melanoma using tiling-resolution arrayCGH.

Guldberg P., Borg A.

Oncogene 26:4738-4748(2007).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

Markowitz S.D., Willson J.K.V., Sy M.-S.

Proc. Natl. Acad. Sci. U.S.A. 93:7832-7837(1996).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

New human tumor cell lines.";

Fogh J., Trempe G.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).