T24Homo sapiens (Human)Cancer cell line

Also known as: T-24, T 24

🤖 AI SummaryBased on 13 publications

Quick Overview

Human bladder cancer cell line with known genetic and molecular characteristics.

Detailed Summary

The T24 cell line is a human bladder cancer cell line derived from a transitional cell carcinoma. It is widely used in cancer research for studying tumor biology, drug response, and genetic alterations. T24 cells exhibit characteristics of malignant transformation, including uncontrolled growth and tumorigenicity in vivo. The cell line has been extensively characterized for its genomic and proteomic profiles, making it a valuable model for investigating bladder cancer mechanisms and therapeutic strategies. T24 is also known for its utility in studies related to tumor-specific antigens and immune responses.

Research Applications

Tumor biology studiesDrug response and pharmacogenomicsGenomic and proteomic profilingImmune response and tumor-specific antigens

Key Characteristics

Malignant transformationTumorigenic in vivoGenomic instabilityExpression of tumor-specific antigens
Generated on 6/15/2025

Basic Information

Database IDCVCL_0554
SpeciesHomo sapiens (Human)
Tissue SourceUrinary bladder[UBERON:UBERON_0001255]

Donor Information

Age82
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseBladder carcinoma
LineageBladder/Urinary Tract
SubtypeBladder Urothelial Carcinoma
OncoTree CodeBLCA

DepMap Information

Source TypeATCC
Source IDACH-000018_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleHRASp.Gly12Val (c.35G>T)Homozygous-from parent cell line T24
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleTP53p.Tyr126Ter (c.378C>G)Homozygous-from parent cell line T24

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,12
D12S391
17,18
D13S317
9,12
D16S539
9
D18S51
16,18
D19S433
13,14
D1S1656
12,15
D21S11
29
D2S1338
20,23
D3S1358
16
D5S818
10
D6S1043
11
D7S820
10,11
D8S1179
9,14
FGA
17,22
Penta D
11,15
Penta E
7,10
TH01
6
TPOX
8,11
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

Tsang S.X., Cai Z.-M., Wu S., Dean M., Costello J.C., Theodorescu D.

Oncogene 36:35-46(2017).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Discrimination between HCV29 and T24 by controlled proliferation of cells co-cultured on substrates with different elasticity.

Raczkowska J., Prauzner-Bechcicki S.

J. Mech. Behav. Biomed. Mater. 88:217-222(2018).

Systematic review: characteristics and preclinical uses of bladder cancer cell lines.

Zuiverloon T.C.M., de Jong F.C., Costello J.C., Theodorescu D.

Bladder Cancer 4:169-183(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Cell line individualization by STR multiplex system in the cell bank found cross-contamination between ECV304 and EJ-1/T24.

Mizusawa H.

Tissue Cult. Res. Commun. 18:329-338(1999).

Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.

Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.

Tissue Antigens 11:279-286(1978).

Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors.

Fogh J.

Natl. Cancer Inst. Monogr. 49:5-9(1978).

Morphologic characterization of two established cell lines, T24 and MGH-U1, derived from human bladder carcinoma.

Kato T., Ishikawa K., Nemoto R.

Nihon Hinyokika Gakkai Zasshi 69:40-46(1978).

Morphological characterization of two established cell lines, T24 and MGH-U1, derived from human urinary bladder carcinoma.

Kato T., Ishikawa K., Nemoto R., Senoo A., Amano Y.

Tohoku J. Exp. Med. 124:339-349(1978).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas.

Marshall C.J., Franks L.M., Carbonell A.W.

J. Natl. Cancer Inst. 58:1743-1751(1977).

Alkaline phosphatase activity in human bladder tumor cell lines.";

Benham F.J., Cottell D.C., Franks L.M., Wilson P.D.

J. Histochem. Cytochem. 25:266-274(1977).

A study of intercellular communication of human transitional cell carcinoma cell lines.

Kihara K., Kageyama Y., Sumi S., Higashi Y., Fukui I., Oshima H.

Nihon Hinyokika Gakkai Zasshi 80:988-994(1989).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines.

Franks L.M.

Cancer Res. 46:3630-3636(1986).

Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen.

Donner J.

Int. J. Cancer 11:765-773(1973).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Human urologic cancer cell lines.";

Williams R.D.

Invest. Urol. 17:359-363(1980).

Identity of some human bladder cancer cell lines.";

O'Toole C.M., Povey S., Hepburn P.J., Franks L.M.

Nature 301:429-430(1983).

Lectins as probes for identification of tumor-associated antigens on urothelial and colonic carcinoma cell lines.

Paulie S., Hansson Y., Lundblad M.-L., Perlmann P.

Int. J. Cancer 31:297-303(1983).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

Studies on cellular adhesiveness in five different culture cell lines derived from carcinoma of the urinary bladder.

Tachibana M.

Keio J. Med. 31:127-148(1982).

p53 mutations in bladder carcinoma cell lines.";

Lippa M., Hatzivassiliou G., Tan J.

Oncol. Res. 6:569-579(1994).

The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes.

Stadler W.M., Olopade O.I.

Urol. Res. 24:239-244(1996).

Expression of bone morphogenetic proteins of human neoplastic epithelial cells.

Hatakeyama S., Gao Y.-H., Ohara-Nemoto Y., Kataoka H., Satoh M.

Biochem. Mol. Biol. Int. 42:497-505(1997).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Presence and location of TP53 mutation determines pattern of CDKN2A/ARF pathway inactivation in bladder cancer.

Markl I.D.C., Jones P.A.

Cancer Res. 58:5348-5353(1998).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Molecular genetic analysis of chromosome 9 candidate tumor-suppressor loci in bladder cancer cell lines.

Coulter J., Kennedy W.J., Skilleter A., Habuchi T., Knowles M.A.

Genes Chromosomes Cancer 34:86-96(2002).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro.

Knowles M.A.

Genes Chromosomes Cancer 43:315-328(2005).

PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors.

Carrato A., Tardon A., Serra C., Real F.X.

Cancer Res. 66:7401-7404(2006).

Chromosomal and proteome analysis of a new T24-based cell line model for aggressive bladder cancer.

Stravodimos K., Pavlakis K., Anagnou N.P., Coleman J.A., Vlahou A.

Proteomics 9:287-298(2009).

The use of short tandem repeat profiling to characterize human bladder cancer cell lines.

Chiong E., Dadbin A., Harris L.D., Sabichi A.L., Grossman H.B.

J. Urol. 181:2737-2748(2009).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

TSC1 involvement in bladder cancer: diverse effects and therapeutic implications.

Kwiatkowski D.J.

J. Pathol. 230:17-27(2013).

Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome.

Orntoft T.F., Zuiverloon T.C.M., Malats N., Zwarthoff E.C., Real F.X.

Eur. Urol. 65:360-366(2014).

Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine.

Hurst C.D., Platt F.M., Knowles M.A.

Eur. Urol. 65:367-369(2014).

Identification of mutations in distinct regions of p85 alpha in urothelial cancer.

Knowles M.A.

PLoS ONE 8:E84411-E84411(2013).

Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors.

Howard K.A., Dyrskjot L., Orntoft T.F., Larsen M.R., Ostenfeld M.S.

Proteomics 14:699-712(2014).

Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer.

Oliveira P., Santos L.

Tumor Biol. 35:4599-4617(2014).

The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.

Chanock S.J., Valencia A., Real F.X.

BMC Genomics 16:403.1-403.16(2015).

Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics.

Limbart D.M., Rodel F., Wezel F., Haferkamp A., Cinatl J. Jr.

Transl. Oncol. 8:210-216(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

J. Proteomics 139:77-83(2016).

Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

Data Brief 7:1302-1305(2016).