ZR-75-1Homo sapiens (Human)Cancer cell line

Also known as: Zr-75-1, ZR751, ZR75-1, ZR75.1, ZR75_1

🤖 AI SummaryBased on 11 publications

Quick Overview

Human breast cancer cell line with known p53 mutations and chromosomal abnormalities.

Detailed Summary

The ZR-75-1 cell line is a human breast cancer cell line derived from a breast carcinoma. It is characterized by specific chromosomal abnormalities, including alterations on chromosome 8, and is known for its p53 gene mutations. This cell line has been used in studies related to breast cancer genetics, including research on chromosomal instability and the role of the p53 gene in tumor development. ZR-75-1 has been utilized in various research applications such as drug sensitivity profiling, molecular cytogenetic analysis, and studies on the effects of genetic mutations on cancer progression. The cell line is also noted for its use in understanding the mechanisms of tumor development and in the identification of potential therapeutic targets.

Research Applications

Chemosensitivity profilingMolecular cytogenetic analysisp53 mutation studiesChromosomal instability researchDrug response studies

Key Characteristics

Chromosomal abnormalities on chromosome 8p53 gene mutationsUsed in breast cancer research
Generated on 6/15/2025

Basic Information

Database IDCVCL_0588
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age63
Age CategoryAdult
SexFemale
Racecaucasian
Subtype Featuresluminal ER, PR+

Disease Information

DiseaseInvasive breast carcinoma of no special type
LineageBreast
SubtypeBreast Invasive Ductal Carcinoma
OncoTree CodeIDC

DepMap Information

Source TypeATCC
Source IDACH-000097_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleHRASp.Glu162Lys (c.484G>A)Homozygous-from parent cell line ZR-75-1
MutationSimplePTENp.Leu108Arg (c.323T>G)Homozygous-from parent cell line ZR-75-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D10S1248
16
D12S391
21
D13S317
9
D16S539
11
D18S51
13,14
D19S433
13,14
D1S1656
14.3,16.3
D21S11
31
D22S1045
15
D2S1338
16,25
D2S441
11,15
D3S1358
15,16
D5S818
13
D7S820
10
D8S1179
11,13
FGA
20,22
Penta D
14
Penta E
7,14
TH01
7,9.3
TPOX
8
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis.

Bedford M.T., Shi X.-B., Li W., Barton M.C., Dent S.Y.R., Kraus W.L.

Genome Res. 28:159-170(2018).

Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.

Lakhani S.R.

Breast Cancer Res. Treat. 167:289-301(2018).

Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.

Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.

J. Proteome Res. 16:1391-1400(2017).

Cell lines from human breast.";

Leibovitz A.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994).

Breast cancer stem cells: tumourspheres and implications for therapy.";

Morrison B.J.

Thesis PhD (2010); Griffith University; Brisbane; Australia.

Establishment and characterization of three new continuous cell lines derived from human breast carcinomas.

Joyce M.J.

Cancer Res. 38:3352-3364(1978).

Metabolism of the oral contraceptive steroids ethynylestradiol and norgestimate by normal (Huma 7) and malignant (MCF-7 and ZR-75-1) human breast cells in culture.

Wild M.J., Rudland P.S., Back D.J.

J. Steroid Biochem. Mol. Biol. 39:535-543(1991).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Characterization of four doxorubicin adapted human breast cancer cell lines with respect to chemotherapeutic drug sensitivity, drug resistance associated membrane proteins and glutathione transferases.

Mannervik B., Bergh J.

Anticancer Res. 13:1425-1430(1993).

Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping.

Isola J.J., Larsson C.

Genes Chromosomes Cancer 28:308-317(2000).

Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.

Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.

Cancer Res. 60:4519-4525(2000).

Molecular cytogenetic analysis of breast cancer cell lines.";

Courtay-Cahen C., Roberts I., Theillet C., Caldas C., Edwards P.A.W.

Br. J. Cancer 83:1309-1317(2000).

Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping.

Isola J.J.

Cancer Genet. Cytogenet. 126:1-7(2001).

Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.

Birnbaum D., Chaffanet M.

Genes Chromosomes Cancer 35:204-218(2002).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.

Edwards P.A.W., Caldas C.

Carcinogenesis 26:923-930(2005).

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Yamori T.

Mol. Cancer Ther. 4:399-412(2005).

BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.

van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.

Cancer Res. 66:41-45(2006).

Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.

Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.

Breast Cancer Res. Treat. 99:97-101(2006).

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.

Cancer Cell 10:515-527(2006).

High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization.

Ringner M., Hoglund M., Borg A.

Genes Chromosomes Cancer 46:543-558(2007).

The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.

Petersen O.W., Gray J.W., Bissell M.J.

Mol. Oncol. 1:84-96(2007).

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.

Breast Cancer Res. Treat. 121:53-64(2010).

Systems-level modeling of cancer-fibroblast interaction.";

Finn S.P., Loda M., Mahmood U., Ramaswamy S.

PLoS ONE 4:E6888-E6888(2009).

Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.

Yamamoto S., Oka M., Hirano T., Sasaki K.

BMC Cancer 10:15.1-15.10(2010).

Reassessment of estrogen receptor expression in human breast cancer cell lines.

Ford C.H.J., Al-Bader M., Al-Ayadhi B., Francis I.

Anticancer Res. 31:521-527(2011).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

McCormick F., Gray J.W.

Cancer Cell 24:450-465(2013).

Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.

Breast Cancer Res. Treat. 142:237-255(2013).

Modeling precision treatment of breast cancer.";

Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.

Genome Biol. 14:R110.1-R110.14(2013).

More than apples and oranges -- detecting cancer with a fruit fly's antenna.

Capuano R., Di Natale C.

Sci. Rep. 4:3576-3576(2014).

Proteome profiling of breast cancer biopsies reveals a wound healing signature of cancer-associated fibroblasts.

Pfeiler G., Gerner C.

J. Proteome Res. 13:4773-4782(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Targeting a cell state common to triple-negative breast cancers.";

Colinge J., Serra V., Nijman S.M.B.

Mol. Syst. Biol. 11:789-789(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Activating mutations in PIK3CB confer resistance to PI3K inhibition and define a novel oncogenic role for p110beta.

Hampton G.M., Lackner M.R.

Cancer Res. 76:1193-1203(2016).

Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.

Eldfors S., Bruck O., Aittokallio T., Kallioniemi O.-P.

BMC Cancer 16:378.1-378.17(2016).

Anecdotal Information

  • Used in a study utilising the fruit fly's olfactory system to detect cancer cells (PubMed=24389870)