RamosHomo sapiens (Human)Cancer cell line
Also known as: RAMOS, Ramos 1, RA 1, RA.1, Ra #1, Ra No. 1, Ramos(RA1), Ramos-RA1, Ramos (RA 1), Ramos (RA #1), Ramos (RA)
Quick Overview
Ramos is a B-cell lymphoma cell line used in cancer research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0597 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Ascites[UBERON:UBERON_0007795] |
Donor Information
Age | 3 |
---|---|
Age Category | Pediatric |
Sex | Male |
Disease Information
Disease | Burkitt lymphoma |
---|---|
Lineage | Lymphoid |
Subtype | Burkitt Lymphoma |
OncoTree Code | BL |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-001636_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
Gene fusion | IGH | MYC-IGH | - | - | PubMed=31160637 |
MutationSimple | TP53 | p.Ile254Asp (c.760_761AT>GA) | Homozygous | - | from parent cell line Ramos |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
The LL-100 panel: 100 cell lines for blood cancer studies.";
MacLeod R.A.F., Nagel S., Steube K.G., Uphoff C.C., Drexler H.G.
Sci. Rep. 9:8218-8218(2019).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Inducibility of the Epstein-Barr virus (EBV) cycle and surface marker properties of EBV-negative lymphoma lines and their in vitro EBV-converted sublines.
Westman A., Clements G.B.
Int. J. Cancer 18:639-652(1976).
Establishment of EBNA-expressing cell lines by infection of Epstein-Barr virus (EBV)-genome-negative human lymphoma cells with different EBV strains.
Fresen K.-O., zur Hausen H.
Int. J. Cancer 17:161-166(1976).
An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection.
Klein G., Giovanella B.C., Westman A., Stehlin J.S. Jr., Mumford D.M.
Intervirology 5:319-334(1975).
An Epstein-Barr virus-negative Burkitt lymphoma cell line (sfRamos) secretes a prolactin-like protein during continuous growth in serum-free medium.
Baglia L.A., Cruz D., Shaw J.E.
Endocrinology 128:2266-2272(1991).
p53 is frequently mutated in Burkitt's lymphoma cell lines.";
Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.
EMBO J. 10:2879-2887(1991).
p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.
Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.
Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991).
Establishment of an Epstein-Barr virus (EBV) genome-positive subline of Ramos (Ramos/NPC) following infection of Ramos with nasopharyngeal carcinoma (NPC)-derived EBV.
Takimoto T., Sato H., Ogura H., Miyazaki T.
Auris Nasus Larynx 14:87-92(1987).
Isoenzyme studies in human leukemia-lymphoma cell lines -- 1. carboxylic esterase.
Drexler H.G., Gaedicke G., Minowada J.
Leuk. Res. 9:209-229(1985).
The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.
Steel C.M., Morten J.E.N., Foster E.
IARC Sci. Publ. 60:265-292(1985).
Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.
Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.
Int. J. Cancer 39:211-218(1987).
Isoenzyme studies in human leukemia-lymphoma cell lines -- III. Beta-hexosaminidase (E.C. 3.2.1.30).
Drexler H.G., Gaedicke G., Minowada J.
Leuk. Res. 9:549-559(1985).
Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
Drexler H.G., Gaedicke G., Minowada J.
Leuk. Res. 9:537-548(1985).
Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.
Ehlin-Henriksson B., Klein G.
Int. J. Cancer 33:459-463(1984).
Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.
Parsons R.G.
J. Immunol. 129:1336-1342(1982).
Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.
Povey S., Jeremiah S., Arthur E., Steel M., Klein G.
Ann. Hum. Genet. 44:119-133(1980).
Relationships between G1 arrest and stability of the p53 and p21Cip1/Waf1 proteins following gamma-irradiation of human lymphoma cells.
O'Connor P.M.
Cancer Res. 55:2387-2393(1995).
DNA double-strand break rejoining deficiency in TK6 and other human B-lymphoblast cell lines.
Olive P.L.
Radiat. Res. 134:307-315(1993).
Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.
Magrath I.T.
FASEB J. 7:951-956(1993).
Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.
Kohn K.W.
Cancer Res. 53:4776-4780(1993).
Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.
Jain V.K., Judde J.-G., Max E.E., Magrath I.T.
J. Immunol. 150:5418-5428(1993).
VH and VL gene analysis in sporadic Burkitt's lymphoma shows somatic hypermutation, intraclonal heterogeneity, and a role for antigen selection.
Chapman C.J., Zhou J.X., Gregory C.D., Rickinson A.B., Stevenson F.K.
Blood 88:3562-3568(1996).
Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
Pike S.E., Gupta G., Magrath I.T., Tosato G.
Cancer Res. 57:2508-2515(1997).
High susceptibility of an Epstein-Barr virus-converted Burkitt's lymphoma cell line to cytotoxic drugs.
Okano M.
Leuk. Res. 21:469-471(1997).
p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.
Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.
Blood 91:1680-1687(1998).
Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.
Magrath I.T., Bhatia K.G.
Cancer Res. 59:696-703(1999).
Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Leuk. Res. 24:255-262(2000).
The c-MYC allele that is translocated into the IgH locus undergoes constitutive hypermutation in a Burkitt's lymphoma line.
Bemark M., Neuberger M.S.
Oncogene 19:3404-3410(2000).
Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Leuk. Res. 25:275-278(2001).
Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.
Maesako Y., Uchiyama T., Ohno H.
Cancer Sci. 94:774-781(2003).
Identification of genes deregulated during serum-free medium adaptation of a Burkitt's lymphoma cell line.
Zander Balderud L., Bemark M.
Cell Prolif. 41:136-155(2008).
National Cancer Institute pediatric preclinical testing program: model description for in vitro cytotoxicity testing.
Reynolds C.P.
Pediatr. Blood Cancer 56:239-249(2011).
Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.
Nature 490:116-120(2012).