RamosHomo sapiens (Human)Cancer cell line

Also known as: RAMOS, Ramos 1, RA 1, RA.1, Ra #1, Ra No. 1, Ramos(RA1), Ramos-RA1, Ramos (RA 1), Ramos (RA #1), Ramos (RA)

🤖 AI SummaryBased on 17 publications

Quick Overview

Ramos is a B-cell lymphoma cell line used in cancer research.

Detailed Summary

Ramos is a human B-cell lymphoma cell line derived from a Burkitt lymphoma patient. It is widely used in research for studying B-cell malignancies, Epstein-Barr virus (EBV) interactions, and cancer immunology. The cell line is known for its ability to express surface markers associated with B-cell differentiation and has been utilized in studies involving p53 mutations, EBV infection, and drug sensitivity. Ramos is also used to investigate the role of specific genes and proteins in lymphoma progression and treatment responses.

Research Applications

B-cell malignanciesEBV interactionsCancer immunologyp53 mutationsDrug sensitivityLymphoma progression

Key Characteristics

B-cell differentiation markersEBV infection studiesp53 mutation analysisDrug response profiling
Generated on 6/15/2025

Basic Information

Database IDCVCL_0597
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age3
Age CategoryPediatric
SexMale

Disease Information

DiseaseBurkitt lymphoma
LineageLymphoid
SubtypeBurkitt Lymphoma
OncoTree CodeBL

DepMap Information

Source TypeATCC
Source IDACH-001636_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene fusionIGHMYC-IGH--PubMed=31160637
MutationSimpleTP53p.Ile254Asp (c.760_761AT>GA)Homozygous-from parent cell line Ramos

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D10S1248
14,15
D12S391
19,22
D13S317
12,13,14
D16S539
10,13
D18S51
14,15
D19S433
14,15.2
D1S1656
12,15.3
D21S11
30
D22S1045
15
D2S1338
20,23
D2S441
11,14
D3S1358
14,15
D5S818
7,12
D6S1043
13,15
D7S820
11
D8S1179
13
FGA
20,24
Penta D
10,13
Penta E
6,8,21
TH01
7,9.3
TPOX
8,9
vWA
15,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

The LL-100 panel: 100 cell lines for blood cancer studies.";

MacLeod R.A.F., Nagel S., Steube K.G., Uphoff C.C., Drexler H.G.

Sci. Rep. 9:8218-8218(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Inducibility of the Epstein-Barr virus (EBV) cycle and surface marker properties of EBV-negative lymphoma lines and their in vitro EBV-converted sublines.

Westman A., Clements G.B.

Int. J. Cancer 18:639-652(1976).

Establishment of EBNA-expressing cell lines by infection of Epstein-Barr virus (EBV)-genome-negative human lymphoma cells with different EBV strains.

Fresen K.-O., zur Hausen H.

Int. J. Cancer 17:161-166(1976).

An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection.

Klein G., Giovanella B.C., Westman A., Stehlin J.S. Jr., Mumford D.M.

Intervirology 5:319-334(1975).

An Epstein-Barr virus-negative Burkitt lymphoma cell line (sfRamos) secretes a prolactin-like protein during continuous growth in serum-free medium.

Baglia L.A., Cruz D., Shaw J.E.

Endocrinology 128:2266-2272(1991).

p53 is frequently mutated in Burkitt's lymphoma cell lines.";

Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.

EMBO J. 10:2879-2887(1991).

p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.

Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.

Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991).

Establishment of an Epstein-Barr virus (EBV) genome-positive subline of Ramos (Ramos/NPC) following infection of Ramos with nasopharyngeal carcinoma (NPC)-derived EBV.

Takimoto T., Sato H., Ogura H., Miyazaki T.

Auris Nasus Larynx 14:87-92(1987).

Isoenzyme studies in human leukemia-lymphoma cell lines -- 1. carboxylic esterase.

Drexler H.G., Gaedicke G., Minowada J.

Leuk. Res. 9:209-229(1985).

The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.

Steel C.M., Morten J.E.N., Foster E.

IARC Sci. Publ. 60:265-292(1985).

Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.

Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.

Int. J. Cancer 39:211-218(1987).

Isoenzyme studies in human leukemia-lymphoma cell lines -- III. Beta-hexosaminidase (E.C. 3.2.1.30).

Drexler H.G., Gaedicke G., Minowada J.

Leuk. Res. 9:549-559(1985).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.

Drexler H.G., Gaedicke G., Minowada J.

Leuk. Res. 9:537-548(1985).

Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.

Ehlin-Henriksson B., Klein G.

Int. J. Cancer 33:459-463(1984).

Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.

Parsons R.G.

J. Immunol. 129:1336-1342(1982).

Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.

Povey S., Jeremiah S., Arthur E., Steel M., Klein G.

Ann. Hum. Genet. 44:119-133(1980).

Relationships between G1 arrest and stability of the p53 and p21Cip1/Waf1 proteins following gamma-irradiation of human lymphoma cells.

O'Connor P.M.

Cancer Res. 55:2387-2393(1995).

DNA double-strand break rejoining deficiency in TK6 and other human B-lymphoblast cell lines.

Olive P.L.

Radiat. Res. 134:307-315(1993).

Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.

Magrath I.T.

FASEB J. 7:951-956(1993).

Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.

Kohn K.W.

Cancer Res. 53:4776-4780(1993).

Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.

Jain V.K., Judde J.-G., Max E.E., Magrath I.T.

J. Immunol. 150:5418-5428(1993).

VH and VL gene analysis in sporadic Burkitt's lymphoma shows somatic hypermutation, intraclonal heterogeneity, and a role for antigen selection.

Chapman C.J., Zhou J.X., Gregory C.D., Rickinson A.B., Stevenson F.K.

Blood 88:3562-3568(1996).

Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.

Pike S.E., Gupta G., Magrath I.T., Tosato G.

Cancer Res. 57:2508-2515(1997).

High susceptibility of an Epstein-Barr virus-converted Burkitt's lymphoma cell line to cytotoxic drugs.

Okano M.

Leuk. Res. 21:469-471(1997).

p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.

Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.

Blood 91:1680-1687(1998).

Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.

Magrath I.T., Bhatia K.G.

Cancer Res. 59:696-703(1999).

Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.

Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.

Leuk. Res. 24:255-262(2000).

The c-MYC allele that is translocated into the IgH locus undergoes constitutive hypermutation in a Burkitt's lymphoma line.

Bemark M., Neuberger M.S.

Oncogene 19:3404-3410(2000).

Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.

Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.

Leuk. Res. 25:275-278(2001).

Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.

Maesako Y., Uchiyama T., Ohno H.

Cancer Sci. 94:774-781(2003).

Identification of genes deregulated during serum-free medium adaptation of a Burkitt's lymphoma cell line.

Zander Balderud L., Bemark M.

Cell Prolif. 41:136-155(2008).

National Cancer Institute pediatric preclinical testing program: model description for in vitro cytotoxicity testing.

Reynolds C.P.

Pediatr. Blood Cancer 56:239-249(2011).

Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.

Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.

Nature 490:116-120(2012).

Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.

Vettorazzi E., Bokemeyer C., Dierlamm J.

Genes Chromosomes Cancer 53:497-515(2014).