MDA-MB-436Homo sapiens (Human)Cancer cell line

Also known as: MDA_MB_436, MDA MB 436, MDA-Mb-436, MDA-MB436, MDAMB436, MDA-436, MDA436, MB436, MD Anderson-Metastatic Breast-436

🤖 AI SummaryBased on 11 publications

Quick Overview

Human breast cancer cell line with chromosomal abnormalities and metastatic origin.

Detailed Summary

MDA-MB-436 is a human breast cancer cell line derived from a pleural effusion, characterized by significant chromosomal abnormalities. It exhibits a complex karyotype with multiple marker chromosomes, including 1q and 11q translocations. The cell line is used in research to study genetic instability, chromosomal alterations, and their implications in cancer progression. It has been utilized in studies involving comparative genomic hybridization (CGH), fluorescence in situ hybridization (FISH), and analysis of p53 mutations. The cell line is also noted for its ability to form tumors in nude mice, making it a valuable model for in vivo studies of breast cancer. Its genetic profile includes mutations in the p53 gene, contributing to its malignant characteristics.

Research Applications

Genomic instability studiesChromosomal aberration analysisp53 mutation analysisTumor formation in nude miceDrug response profiling

Key Characteristics

Complex karyotype with multiple marker chromosomes1q and 11q translocationsp53 gene mutationsMetastatic origin from pleural effusionTumorigenic in nude mice
Generated on 6/15/2025

Basic Information

Database IDCVCL_0623
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age43
Age CategoryAdult
SexFemale
Racecaucasian
Subtype Featuresbasal_B TNBC

Disease Information

DiseaseInvasive breast carcinoma of no special type
LineageBreast
SubtypeBreast Invasive Carcinoma, NOS
OncoTree CodeBRCNOS

DepMap Information

Source TypeATCC
Source IDACH-000573_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionFHIT-Homozygous-PubMed=16895604
MutationSimpleBRCA1c.5277+1G>AHemizygousSplice donor mutationfrom parent cell line MDA-MB-436
MutationSimpleRB1p.Gly203fs*9 (c.607_608ins227)Homozygous-from parent cell line MDA-MB-436
MutationSimpleTP53p.Glu204fs*7 (c.610_612delinsGCGTGTGG)Unspecified-from parent cell line MDA-MB-436

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D10S1248
13,14
D12S391
20
D13S317
10
D16S539
9
D18S51
12
D19S433
13
D1S1656
17.3,19.3
D21S11
30,31.2
D22S1045
17
D2S1338
23
D2S441
10
D3S1358
18
D5S818
13
D7S820
10
D8S1179
10,14
FGA
21,24
Penta D
9
Penta E
10,12
TH01
9.3
TPOX
8
vWA
14,20
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis.

Bedford M.T., Shi X.-B., Li W., Barton M.C., Dent S.Y.R., Kraus W.L.

Genome Res. 28:159-170(2018).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Cell lines from human breast.";

Leibovitz A.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994).

Breast cancer stem cells: tumourspheres and implications for therapy.";

Morrison B.J.

Thesis PhD (2010); Griffith University; Brisbane; Australia.

Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization.

Cailleau R.M., Olive M., Cruciger Q.V.J.

In Vitro 14:911-915(1978).

Mutations in p53 as potential molecular markers for human breast cancer.

Runnebaum I.B., Nagarajan M., Bowman M., Soto D., Sukumar S.

Proc. Natl. Acad. Sci. U.S.A. 88:10657-10661(1991).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Cytogenetic analysis on eight human breast tumor cell lines: high frequencies of 1q, 11q and HeLa-like marker chromosomes.

Satya-Prakash K.L., Pathak S., Hsu T.-C., Olive M., Cailleau R.M.

Cancer Genet. Cytogenet. 3:61-73(1981).

Analysis of the FHIT gene and FRA3B region in sporadic breast cancer, preneoplastic lesions, and familial breast cancer probands.

Gazdar A.F.

Cancer Res. 57:3664-3668(1997).

Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays.

Smith P.D., Jiang Y., Gooden G.C., Trent J.M., Meltzer P.S.

Cancer Res. 58:5009-5013(1998).

Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping.

Isola J.J., Larsson C.

Genes Chromosomes Cancer 28:308-317(2000).

Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.

Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.

Cancer Res. 60:4519-4525(2000).

Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping.

Isola J.J.

Cancer Genet. Cytogenet. 126:1-7(2001).

Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.

Edwards P.A.W., Caldas C.

Carcinogenesis 26:923-930(2005).

BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.

van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.

Cancer Res. 66:41-45(2006).

Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.

Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.

Breast Cancer Res. Treat. 99:97-101(2006).

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.

Cancer Cell 10:515-527(2006).

The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.

Petersen O.W., Gray J.W., Bissell M.J.

Mol. Oncol. 1:84-96(2007).

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.

Breast Cancer Res. Treat. 121:53-64(2010).

Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer.

Chavez K.J., Garimella S.V., Lipkowitz S.

Breast Dis. 32:35-48(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

Molecular characterisation of cell line models for triple-negative breast cancers.

Reis-Filho J.S., Tutt A.

BMC Genomics 13:619.1-619.14(2012).

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

McCormick F., Gray J.W.

Cancer Cell 24:450-465(2013).

Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.

Breast Cancer Res. Treat. 142:237-255(2013).

Modeling precision treatment of breast cancer.";

Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.

Genome Biol. 14:R110.1-R110.14(2013).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

The proteomic landscape of triple-negative breast cancer.";

Irie H.Y., Lee S.-I., Blau C.A., Villen J.

Cell Rep. 11:630-644(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.

Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.

J. Proteome Res. 16:1391-1400(2017).

Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.

Lakhani S.R.

Breast Cancer Res. Treat. 167:289-301(2018).