SK-ES-1Homo sapiens (Human)Cancer cell line
Also known as: SK-ES, SKES1, SKES-1, SK-ES1, SK ES 01, Sk-ES-1, Sk-Es-1
Quick Overview
Human Ewing sarcoma cell line with STAG2 and TP53 mutations
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0627 |
---|---|
Species | Homo sapiens (Human) |
Donor Information
Age | 18 |
---|---|
Age Category | Pediatric |
Sex | Male |
Race | caucasian |
Subtype Features | EWS-FLI |
Disease Information
Disease | Ewing sarcoma |
---|---|
Lineage | Bone |
Subtype | Ewing Sarcoma |
OncoTree Code | ES |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000087_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Cys176Phe (c.527G>T) | Unspecified | - | PubMed=8221663 |
MutationSimple | STAG2 | p.Gln735Ter (c.2203C>T) | Unspecified | - | PubMed=25223734, PubMed=25010205 |
Gene fusion | EWSR1 | EWSR1-FLI1, EWS-FLI1 | - | Type 1 fusion | PubMed=15150091 |
Gene deletion | CDKN2A | - | Homozygous | Possible | PubMed=26870271 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells.
Muller I., Walles H., Hartmann W., Rossig C.
Mol. Ther. 27:933-946(2019).
T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G.
Meltzer J., Farwick N., Greune L., Rossig C.
Oncotarget 9:6536-6549(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
CXCL14, CXCR7 expression and CXCR4 splice variant ratio associate with survival and metastases in Ewing sarcoma patients.
Schmidt T., Szuhai K., Hogendoorn P.C.W.
Eur. J. Cancer 51:2624-2633(2015).
Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.
Harris E., Monks A., Morris J.
Mol. Cancer Ther. 14:2452-2462(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations.
Zhang J.-H., Delattre O.
Cancer Discov. 4:1342-1353(2014).
The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation.
Catchpoole D., Llombart-Bosch A., Waldman T., Khan J.
PLoS Genet. 10:E1004475-E1004475(2014).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways.
Borsu L., Barr F.G., Ladanyi M.
Clin. Cancer Res. 18:748-757(2012).
1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.
Debiec-Rychter M., Schaefer K.-L., de Alava E.
Oncogene 31:1287-1298(2012).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort.
Buerger H., Aigner T., Gabbert H.E., Poremba C.
Genes Chromosomes Cancer 49:40-51(2010).
Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma.
Savola S., Nardi F., Scotlandi K., Picci P., Knuutila S.
Cytogenet. Genome Res. 119:21-26(2007).
Identification of side population cells (stem-like cell population) in pediatric solid tumor cell lines.
Hayashi Y.
J. Pediatr. Surg. 42:2040-2045(2007).
Lack of matrix metalloproteinase (MMP)-1 and -3 expression in Ewing sarcoma may be due to loss of accessibility of the MMP regulatory element to the specific fusion protein in vivo.
Umezawa A.
Biochem. Biophys. Res. Commun. 293:61-71(2002).
The expression of ccn3(nov) gene in musculoskeletal tumors.";
Picci P., Scotlandi K.
Am. J. Pathol. 160:849-859(2002).
Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2and c-Myc expression.
Weissman B.E., Delattre O.
Oncogene 20:3258-3265(2001).
Molecular analysis of Ewing's sarcoma: another fusion gene, EWS-E1AF, available for diagnosis.
Hata J.-i.
Jpn. J. Cancer Res. 89:703-711(1998).
Immunostaining of the p30/32MIC2 antigen and molecular detection of EWS rearrangements for the diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumor.
Lollini P.-L., Picci P., Bertoni F., Baldini N.
Hum. Pathol. 27:408-416(1996).
Narrow spectrum of infrequent p53 mutations and absence of MDM2 amplification in Ewing tumours.
Salzer-Kuntschik M., Gadner H.
Oncogene 8:2683-2690(1993).
Mutations of the p53 gene are involved in Ewing's sarcomas but not in neuroblastomas.
Kamoshita S., Hanada R., Yamamoto K., Hongo T., Yamada M., Tsuchida Y.
Cancer Res. 53:5284-5288(1993).
EWS-erg and EWS-Fli1 fusion transcripts in Ewing's sarcoma and primitive neuroectodermal tumors with variant translocations.
Nycum L.M., Emanuel B.S., Evans G.A.
J. Clin. Invest. 94:489-496(1994).
Polymorphic enzyme analysis of cultured human tumor cell lines.";
Dracopoli N.C., Fogh J.
J. Natl. Cancer Inst. 70:469-476(1983).
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
Fogh J., Wright W.C., Loveless J.D.
J. Natl. Cancer Inst. 58:209-214(1977).
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
Fogh J., Fogh J.M., Orfeo T.
J. Natl. Cancer Inst. 59:221-226(1977).
Systematic multi-omics profiling of Ewing sarcoma cell lines.";
Orth M.F.
Thesis PhD (2021); Ludwig Maximilians University of Munich; Munich; Germany.