SK-ES-1Homo sapiens (Human)Cancer cell line

Also known as: SK-ES, SKES1, SKES-1, SK-ES1, SK ES 01, Sk-ES-1, Sk-Es-1

🤖 AI SummaryBased on 13 publications

Quick Overview

Human Ewing sarcoma cell line with STAG2 and TP53 mutations

Detailed Summary

SK-ES-1 is a human Ewing sarcoma cell line derived from a bone tumor. It is characterized by specific genetic alterations including mutations in the STAG2 and TP53 genes, which are associated with aggressive disease progression. The cell line is widely used in research to study the molecular mechanisms of Ewing sarcoma and to evaluate potential therapeutic strategies. Its genomic profile, including copy number variations and mutation status, provides valuable insights into the pathogenesis of this cancer type. The cell line is also utilized in drug screening assays to identify effective treatments for patients with Ewing sarcoma.

Research Applications

Genomic analysis of Ewing sarcomaMutation profiling of STAG2 and TP53Drug screening for targeted therapiesInvestigation of tumor progression mechanisms

Key Characteristics

STAG2 mutationTP53 mutation1q gainCDT2 overexpression
Generated on 6/15/2025

Basic Information

Database IDCVCL_0627
SpeciesHomo sapiens (Human)

Donor Information

Age18
Age CategoryPediatric
SexMale
Racecaucasian
Subtype FeaturesEWS-FLI

Disease Information

DiseaseEwing sarcoma
LineageBone
SubtypeEwing Sarcoma
OncoTree CodeES

DepMap Information

Source TypeATCC
Source IDACH-000087_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Cys176Phe (c.527G>T)Unspecified-PubMed=8221663
MutationSimpleSTAG2p.Gln735Ter (c.2203C>T)Unspecified-PubMed=25223734, PubMed=25010205
Gene fusionEWSR1EWSR1-FLI1, EWS-FLI1-Type 1 fusionPubMed=15150091
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
11
D13S317
8,9
D16S539
11
D18S51
13,15
D19S433
13,14
D21S11
30
D2S1338
17
D3S1358
16,18
D5S818
12
D7S820
10,11
D8S1179
11,13
FGA
20,21
Penta D
11,13
Penta E
11
SE33
18,20
TH01
6,9.3
TPOX
8
vWA
14,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells.

Muller I., Walles H., Hartmann W., Rossig C.

Mol. Ther. 27:933-946(2019).

T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G.

Meltzer J., Farwick N., Greune L., Rossig C.

Oncotarget 9:6536-6549(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

CXCL14, CXCR7 expression and CXCR4 splice variant ratio associate with survival and metastases in Ewing sarcoma patients.

Schmidt T., Szuhai K., Hogendoorn P.C.W.

Eur. J. Cancer 51:2624-2633(2015).

Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.

Harris E., Monks A., Morris J.

Mol. Cancer Ther. 14:2452-2462(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations.

Zhang J.-H., Delattre O.

Cancer Discov. 4:1342-1353(2014).

The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation.

Catchpoole D., Llombart-Bosch A., Waldman T., Khan J.

PLoS Genet. 10:E1004475-E1004475(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways.

Borsu L., Barr F.G., Ladanyi M.

Clin. Cancer Res. 18:748-757(2012).

1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.

Debiec-Rychter M., Schaefer K.-L., de Alava E.

Oncogene 31:1287-1298(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort.

Buerger H., Aigner T., Gabbert H.E., Poremba C.

Genes Chromosomes Cancer 49:40-51(2010).

Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma.

Savola S., Nardi F., Scotlandi K., Picci P., Knuutila S.

Cytogenet. Genome Res. 119:21-26(2007).

Identification of side population cells (stem-like cell population) in pediatric solid tumor cell lines.

Hayashi Y.

J. Pediatr. Surg. 42:2040-2045(2007).

Lack of matrix metalloproteinase (MMP)-1 and -3 expression in Ewing sarcoma may be due to loss of accessibility of the MMP regulatory element to the specific fusion protein in vivo.

Umezawa A.

Biochem. Biophys. Res. Commun. 293:61-71(2002).

The expression of ccn3(nov) gene in musculoskeletal tumors.";

Picci P., Scotlandi K.

Am. J. Pathol. 160:849-859(2002).

Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2and c-Myc expression.

Weissman B.E., Delattre O.

Oncogene 20:3258-3265(2001).

Molecular analysis of Ewing's sarcoma: another fusion gene, EWS-E1AF, available for diagnosis.

Hata J.-i.

Jpn. J. Cancer Res. 89:703-711(1998).

Immunostaining of the p30/32MIC2 antigen and molecular detection of EWS rearrangements for the diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumor.

Lollini P.-L., Picci P., Bertoni F., Baldini N.

Hum. Pathol. 27:408-416(1996).

Narrow spectrum of infrequent p53 mutations and absence of MDM2 amplification in Ewing tumours.

Salzer-Kuntschik M., Gadner H.

Oncogene 8:2683-2690(1993).

Mutations of the p53 gene are involved in Ewing's sarcomas but not in neuroblastomas.

Kamoshita S., Hanada R., Yamamoto K., Hongo T., Yamada M., Tsuchida Y.

Cancer Res. 53:5284-5288(1993).

EWS-erg and EWS-Fli1 fusion transcripts in Ewing's sarcoma and primitive neuroectodermal tumors with variant translocations.

Nycum L.M., Emanuel B.S., Evans G.A.

J. Clin. Invest. 94:489-496(1994).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Systematic multi-omics profiling of Ewing sarcoma cell lines.";

Orth M.F.

Thesis PhD (2021); Ludwig Maximilians University of Munich; Munich; Germany.