SK-LMS-1Homo sapiens (Human)Cancer cell line

Also known as: SKLMS1, SKLMS-1

🤖 AI SummaryBased on 12 publications

Quick Overview

Human leiomyosarcoma cell line for cancer research.

Detailed Summary

SK-LMS-1 is a human leiomyosarcoma cell line derived from a soft tissue sarcoma. It is commonly used in cancer research to study the molecular mechanisms of sarcoma development and drug response. This cell line has been utilized in studies examining the effects of various anticancer agents and has shown sensitivity to certain therapeutic compounds. Research involving SK-LMS-1 contributes to understanding the genetic and molecular characteristics of leiomyosarcomas, aiding in the development of targeted therapies. The cell line is part of several large-scale cancer cell line databases, providing valuable resources for genomic and pharmacological studies.
Generated on 6/15/2025

Basic Information

Database IDCVCL_0628
SpeciesHomo sapiens (Human)
Tissue SourceVulva[UBERON:UBERON_0000997]

Donor Information

Age43
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseLeiomyosarcoma
LineageSoft Tissue
SubtypeLeiomyosarcoma
OncoTree CodeLMS

DepMap Information

Source TypeATCC
Source IDACH-000145_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Gly245Ser (c.733G>A)UnspecifiedSomatic mutation acquired during proliferationPubMed=28445466
MutationSimpleTP53p.Met237Lys (c.710T>A)Unspecified-from parent cell line SK-LMS-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
9,10
D13S317
11,12
D16S539
8,11
D18S51
14,19
D19S433
14,15
D21S11
28,30
D2S1338
17,24
D3S1358
15,16
D5S818
11,13
D7S820
8,9
D8S1179
12
FGA
22,25
Penta D
12,13
Penta E
7,13
TH01
6,7
TPOX
8,9
vWA
18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Sister chromatid exchange and genomic instability in soft tissue sarcomas: potential implications for response to DNA-damaging treatments.

Salawu A., Wright K., Al-Kathiri A., Wyld L., Reed M.W.R., Sisley K.

Sarcoma 2018:3082526.1-3082526.8(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.

Harris E., Monks A., Morris J.

Mol. Cancer Ther. 14:2452-2462(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Analysis of p53 status in human cell lines using a functional assay in yeast: detection of new non-sense p53 mutation in codon 124.

Smardova J., Pavlova S., Svitakova M., Grochova D., Ravcukova B.

Oncol. Rep. 14:901-907(2005).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Mutation of the p53 gene in human soft tissue sarcomas: association with abnormalities of the RB1 gene.

Fletcher C.D.M., Ball A.B.S., Thomas M., Gusterson B.A., Cooper C.S.

Oncogene 5:1297-1301(1990).

Platelet-derived growth factor (PDGF) receptor activation in cell transformation and human malignancy.

Fleming T.P., Matsui T., Aaronson S.A.

Exp. Gerontol. 27:523-532(1992).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

New human tumor cell lines.";

Fogh J., Trempe G.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).