22Rv1Homo sapiens (Human)Cancer cell line

Also known as: CWR22R, CWR22Rv1, CWR22-R1, CWR22R-V1, CWR22-Rv1, CWR-22rv1, 22rV1, 22Rv-1, 22RV1

🤖 AI SummaryBased on 11 publications

Quick Overview

Prostate cancer cell line with AR splice variants and castration-resistant properties.

Detailed Summary

The 22Rv1 cell line is a prostate cancer cell line derived from a castration-resistant prostate cancer xenograft. It is characterized by the presence of androgen receptor (AR) splice variants, including AR-V7, which contribute to resistance against androgen deprivation therapy. This cell line is widely used in research to study mechanisms of castration-resistant prostate cancer (CRPC) and the role of AR splice variants in tumor progression. The 22Rv1 cell line has been utilized in studies investigating the regulation of AR splicing through alternative polyadenylation and the development of therapeutic strategies targeting AR variants. Additionally, it has been used to explore the genetic ancestry and misclassification of cell lines, highlighting the importance of accurate cell line characterization in cancer research.

Research Applications

Castration-resistant prostate cancer (CRPC) researchAndrogen receptor (AR) splice variant studiesTherapeutic target identification for AR variantsGenetic ancestry and cell line authenticationRegulation of AR splicing through alternative polyadenylation
Generated on 6/16/2025

Basic Information

Database IDCVCL_1045
SpeciesHomo sapiens (Human)
Tissue SourceProstate[UBERON:UBERON_0002367]

Donor Information

Age CategoryAdult
SexMale

Disease Information

DiseaseProstate carcinoma
LineageProstate
SubtypeProstate Adenocarcinoma
OncoTree CodePRAD

DepMap Information

Source TypeATCC
Source IDACH-000956_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Gln331Arg (c.992A>G)Heterozygous-from parent cell line 22Rv1
MutationSimplePIK3CAp.Gln546Arg (c.1637A>G)Heterozygous-from parent cell line 22Rv1
MutationSimpleKMT2Dp.Gln3158Ter (c.9472C>T)Heterozygous-from parent cell line 22Rv1
MutationSimpleKMT2Dp.Arg1252Ter (c.3754C>T)Heterozygous-from parent cell line 22Rv1
MutationSimpleBRAFp.Leu597Arg (c.1790T>G)Heterozygous-from parent cell line 22Rv1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10,11
D10S1248
13,14,15
D12S391
18,25
D13S317
8,9,12
D16S539
12
D18S51
13,14
D19S433
13,14
D1S1656
17,18,19
D21S11
30
D22S1045
15
D2S1338
17,18
D2S441
11,12
D3S1358
14,15
D5S818
11,12
D6S1043
16
D7S820
9,10,11
D8S1179
12,13,14
DYS391
11
FGA
19,23
Penta D
9,12
Penta E
5,13
TH01
6,9.3
TPOX
8
vWA
14,15,20,21
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Genomic characterization of preclinical prostate cancer cell line models.

Figg W.D. Sr.

Int. J. Mol. Sci. 25:6111.1-6111.19(2024).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

A novel CRISPR-engineered prostate cancer cell line defines the AR-V transcriptome and identifies PARP inhibitor sensitivities.

Jones D., Gaughan L.

Nucleic Acids Res. 47:5634-5647(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.

Mitra R., Nonn L., Kimbro K.S., Kittles R.A.

Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Targeting a single alternative polyadenylation site coordinately blocks expression of androgen receptor mRNA splice variants in prostate cancer.

Ondigi O., Voytas D.F., Henzler C., Dehm S.M.

Cancer Res. 77:5228-5235(2017).

Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance.

Gregory-Evans C.Y., Karnes R.J., Jenkins R.B., Klein E.A., Buttyan R.

Oncotarget 8:18949-18967(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of fibroblast-free CWR-R1ca castration-recurrent prostate cancer cell line.

Shourideh M., DePriest A., Mohler J.L., Wilson E.M., Koochekpour S.

Prostate 76:1067-1077(2016).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A novel approach for characterizing microsatellite instability in cancer cells.

Lu Y.-H., Soong T.D., Elemento O.

PLoS ONE 8:E63056-E63056(2013).

Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines.

Dehm S.M.

Cancer Res. 73:483-489(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression.

Li Y.-M., Alsagabi M., Fan D.-H., Bova G.S., Tewfik A.H., Dehm S.M.

Cancer Res. 71:2108-2117(2011).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Multiple integrated copies and high-level production of the human retrovirus XMRV (xenotropic murine leukemia virus-related virus) from 22Rv1 prostate carcinoma cells.

Tewari M., Miller A.D.

J. Virol. 83:7353-7356(2009).

Genome-wide characterization of gene expression variations and DNA copy number changes in prostate cancer cell lines.

Brooks J.D.

Prostate 63:187-197(2005).

Spectral karyotype (SKY) analysis of human prostate carcinoma cell lines.

Nordeen S.K., Miller G.J., Varella-Garcia M.

Prostate 57:226-244(2003).

Molecular characterization of human prostate carcinoma cell lines.";

Smith E.E., Miller H.L., Nordeen S.K., Miller G.J., Lucia M.S.

Prostate 57:205-225(2003).

Human prostate cancer cell lines.";

Russell P.J., Kingsley E.A.

Methods Mol. Med. 81:21-39(2003).

A new human prostate carcinoma cell line, 22Rv1.";

Jacobberger J.W.

In Vitro Cell. Dev. Biol. Anim. 35:403-409(1999).

Cell growth curves for different cell lines and their relationship with biological activities.

Rubio-Pino J.L.

Int. J. Biotechnol. Mol. Biol. Res. 4:60-70(2013).