786-OHomo sapiens (Human)Cancer cell line

Also known as: 786-o, 786O, 786-0, 786.O, 786-O RCC, RCC 786-O, RCC_7860, RCC 7860, 7860, 786-0WT, 796-0 (Occasionally.), 768-0 (Occasionally.)

🤖 AI SummaryBased on 13 publications

Quick Overview

Human renal cell carcinoma cell line with clear cell morphology and VHL mutations.

Detailed Summary

The 786-O cell line is a human renal cell carcinoma (RCC) line derived from a clear cell renal adenocarcinoma. It exhibits characteristics of clear cell RCC, including VHL gene mutations and loss of heterozygosity on chromosome 3p. The cell line has been used in studies investigating the molecular mechanisms of RCC, including the role of VHL in tumor suppression and the development of targeted therapies. It is also utilized in drug screening and research on tumor immunology and resistance mechanisms. The cell line has a hypertriploid karyotype and has been maintained in culture for over a year with stable growth characteristics.

Research Applications

Molecular mechanisms of RCCVHL gene function and mutation analysisDrug screening and developmentTumor immunology and resistanceGenomic and proteomic profiling

Key Characteristics

Clear cell morphologyVHL mutationsLoss of heterozygosity on 3pHypertriploid karyotypeStable in long-term culture
Generated on 6/16/2025

Basic Information

Database IDCVCL_1051
SpeciesHomo sapiens (Human)
Tissue SourceKidney[UBERON:UBERON_0002113]

Donor Information

Age58
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseRenal cell carcinoma
LineageKidney
SubtypeRenal Clear Cell Carcinoma
OncoTree CodeCCRCC

DepMap Information

Source TypeATCC
Source IDACH-000649_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimplePTENp.Gln149Ter (c.445C>T)Homozygous-from parent cell line 786-O
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleTP53c.560-2A>GHomozygousSplice acceptor mutationPubMed=29970484
MutationSimpleTP53p.Pro278Ala (c.832C>G)Unspecified-PubMed=18006756, PubMed=12884349
MutationSimpleVHLp.Gly104Alafs*55 (c.311delG)Unspecified-PubMed=7915601

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10
D13S317
8
D16S539
12
D18S51
13,14
D19S433
14,15
D21S11
29,30
D2S1338
17,18
D3S1358
16
D5S818
9
D7S820
11,12
D8S1179
13
FGA
24
Penta D
9,12
Penta E
7,16
TH01
6,9.3
TPOX
8,11
vWA
15,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Everolimus resistance in clear cell renal cell carcinoma: miRNA-101 and HIF-2alpha as molecular triggers?

Nogueira I., Dias F., Morais M., Teixeira A.L., Medeiros R.

Future Oncol. 15:2361-2370(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Metabolic footprinting of a clear cell renal cell carcinoma in vitro model for human kidney cancer detection.

Monge M.E.

J. Proteome Res. 17:3877-3888(2018).

Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection.

Hsieh J.J.-D., Hakimi A.A.

Nat. Commun. 8:15165.1-15165.10(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Choosing the right cell line for renal cell cancer research.";

Czarnecka A.M.

Mol. Cancer 15:83.1-83.15(2016).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

In vitro cultivation of human renal cell cancer. II. Characterization of cell lines.

Williams R.D., Elliott A.Y., Stein N., Fraley E.E.

In Vitro 14:779-786(1978).

In vitro cultivation of human renal cell cancer. I. Establishment of cells in culture.

Williams R.D., Elliott A.Y., Stein N., Fraley E.E.

In Vitro 12:623-627(1976).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Human urologic cancer cell lines.";

Williams R.D.

Invest. Urol. 17:359-363(1980).

Mutations of the VHL tumour suppressor gene in renal carcinoma.";

Linehan W.M.

Nat. Genet. 7:85-90(1994).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Allogeneic hematopoietic cell transplantation for metastatic renal cell carcinoma after nonmyeloablative conditioning: toxicity, clinical response, and immunological response to minor histocompatibility antigens.

Otterud B.E., Leppert M.F., Storb R., Sandmaier B.M.

Clin. Cancer Res. 10:7799-7811(2004).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Downregulation of SAV1 plays a role in pathogenesis of high-grade clear cell renal cell carcinoma.

Mimata H., Seto M., Moriyama M.

BMC Cancer 11:523.1-523.10(2011).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Loss of PBRM1 expression is associated with renal cell carcinoma progression.

Pawlowski R., Muhl S.M., Sulser T., Krek W., Moch H., Schraml P.

Int. J. Cancer 132:E11-E17(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A mass spectrometric-derived cell surface protein atlas.";

Aebersold R., Boheler K.R., Zandstra P.W., Wollscheid B.

PLoS ONE 10:E0121314-E0121314(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

J. Proteomics 139:77-83(2016).

Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

Data Brief 7:1302-1305(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).