8505CHomo sapiens (Human)Cancer cell line

Also known as: 8505c, 8509C

🤖 AI SummaryBased on 14 publications

Quick Overview

Human anaplastic thyroid cancer cell line with known genetic alterations.

Detailed Summary

The 8505C cell line is a human anaplastic thyroid cancer cell line derived from a 67-year-old female patient. It is characterized by specific genetic mutations, including a C:G to T:A transition at the first base of p53 gene codon 273. This cell line has been used in studies related to thyroid cancer, particularly in understanding the role of p53 mutations in malignant transformation. The 8505C cell line is also noted for its genomic instability and has been utilized in research on the molecular mechanisms of thyroid cancer progression. It is part of a panel of cell lines used for studying the genetic and molecular characteristics of thyroid carcinomas.

Research Applications

Study of p53 mutations in thyroid cancerAnalysis of genomic instability in thyroid carcinomasInvestigation of molecular mechanisms of thyroid cancer progression

Key Characteristics

Genetic mutations in p53 geneGenomic instabilityUsed in studies of anaplastic thyroid cancer
Generated on 6/16/2025

Basic Information

Database IDCVCL_1054
SpeciesHomo sapiens (Human)
Tissue SourceThyroid gland[UBERON:UBERON_0002046]

Donor Information

Age78
Age CategoryAdult
SexFemale

Disease Information

DiseaseAnaplastic thyroid carcinoma
LineageThyroid
SubtypeAnaplastic Thyroid Cancer
OncoTree CodeTHAP

DepMap Information

Source TypeHSRRB
Source IDACH-001307_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg248Gly (c.742C>G)Unspecified-PubMed=28251557
MutationSimpleTERTc.1-146C>T (c.250C>T) (C250T)UnspecifiedIn promoterPubMed=31068700
MutationSimpleNF2p.Glu129Ter (c.385G>T)Homozygous-Unknown, Unknown, PubMed=30737244
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12,13
D13S317
13
D16S539
12
D18S51
16
D19S433
13,14
D21S11
28,32.2
D2S1338
17,24
D3S1358
16,17
D5S818
10,11
D7S820
10
D8S1179
10,13
FGA
23
Penta D
9,10
Penta E
12,15
TH01
6
TPOX
10,11
vWA
17,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Comprehensive genetic characterization of human thyroid cancer cell lines: a validated panel for preclinical studies.

Fagin J.A., Schweppe R.E.

Clin. Cancer Res. 25:3141-3151(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease.

Ibrahimpasic T., Ghossein R.A., Fagin J.A.

J. Clin. Endocrinol. Metab. 98:E1562-E1566(2013).

Thyroid cancer cell lines: an overview.";

van Staveren W.C.G., Maenhaut C.

Front. Endocrinol. 3:133.1-133.9(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites.

Grandis J.R., Sidransky D., Heldin N.-E., Myers J.N.

Clin. Cancer Res. 17:7248-7264(2011).

Establishment of 2 human thyroid-carcinoma cell-lines (8305C, 8505C) bearing p53 gene-mutations.

Iwamoto K.S., Tsuyama N., Nakamura N., Akiyama M.

Int. J. Oncol. 4:583-586(1994).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Conventional and molecular cytogenetics of human non-medullary thyroid carcinoma: characterization of eight cell line models and review of the literature on clinical samples.

Ribeiro F.R., Meireles A.M., Rocha A.S., Teixeira M.R.

BMC Cancer 8:371.1-371.11(2008).

Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification.

Haugen B.R.

J. Clin. Endocrinol. Metab. 93:4331-4341(2008).

Human thyroid tumor cell lines derived from different tumor types present a common dedifferentiated phenotype.

Franc B., Thomas G., Libert F., Dumont J.-E., Detours V., Maenhaut C.

Cancer Res. 67:8113-8120(2007).

Molecular and genotypic characterization of human thyroid follicular cell carcinoma-derived cell lines.

Sobrinho-Simoes M.

Thyroid 17:707-715(2007).

A novel amplification target, DUSP26, promotes anaplastic thyroid cancer cell growth by inhibiting p38 MAPK activity.

Yu W., Imoto I., Inoue J., Onda M., Emi M., Inazawa J.

Oncogene 26:1178-1187(2007).

Comprehensive gene expression profiling of anaplastic thyroid cancers with cDNA microarray of 25 344 genes.

Mizutani K., Shimizu K., Nagahama M., Ito K., Tanaka T., Tsunoda T.

Endocr. Relat. Cancer 11:843-854(2004).

p73 tumor-suppressor activity is impaired in human thyroid cancer.";

Vigneri P.

Cancer Res. 63:5829-5837(2003).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Expression of bone morphogenetic proteins of human neoplastic epithelial cells.

Hatakeyama S., Gao Y.-H., Ohara-Nemoto Y., Kataoka H., Satoh M.

Biochem. Mol. Biol. Int. 42:497-505(1997).

Role of p53 mutations in endocrine tumorigenesis: mutation detection by polymerase chain reaction-single strand conformation polymorphism.

Yoshimoto K., Iwahana H., Fukuda A., Sano T., Saito S., Itakura M.

Cancer Res. 52:5061-5064(1992).