A-498Homo sapiens (Human)Cancer cell line

Also known as: A498

🤖 AI SummaryBased on 14 publications

Quick Overview

Human renal cell carcinoma cell line for cancer research.

Detailed Summary

The A-498 cell line is a human renal cell carcinoma cell line derived from a renal tumor. It is widely used in cancer research for studying the molecular mechanisms of renal cell carcinoma. The cell line has been characterized in multiple studies, including those focusing on genetic mutations and drug resistance mechanisms. Research on A-498 has contributed to understanding the role of PI3K pathway alterations in cancer progression and therapeutic resistance. Additionally, it has been utilized in studies related to tumor biology, including investigations into cell proliferation, apoptosis, and response to various therapeutic agents. The A-498 cell line is part of several large-scale cancer cell line panels, such as the NCI-60 and the Cancer Cell Line Encyclopedia (CCLE), which provide comprehensive genomic and pharmacological data for research purposes.

Research Applications

Cancer biologyDrug resistance mechanismsGenomic profilingPharmacological screening

Key Characteristics

PI3K pathway alterationsGenomic instabilityDrug resistanceRenal tumor origin
Generated on 6/16/2025

Basic Information

Database IDCVCL_1056
SpeciesHomo sapiens (Human)
Tissue SourceKidney[UBERON:UBERON_0002113]

Donor Information

Age52
Age CategoryAdult
SexFemale

Disease Information

DiseaseRenal cell carcinoma
LineageKidney
SubtypeRenal Cell Carcinoma
OncoTree CodeRCC

DepMap Information

Source TypeATCC
Source IDACH-000555_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimplePIK3CBp.Asp1067Val (c.3200A>T)Heterozygous-from parent cell line A-498
MutationSimpleVHLp.Gly144Serfs*14 (c.426_429delTGAC)Homozygous-from parent cell line A-498
MutationSimpleVHLp.Val142fs*30 (c.425_429delTTGAC)Unspecified-PubMed=8493574

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12
D13S317
12
D16S539
12
D18S51
17
D19S433
12
D21S11
28,32
D2S1338
26
D3S1358
15
D5S818
11,13
D7S820
10,11
D8S1179
13,15
FGA
18,20
Penta D
9,14
Penta E
10,14
TH01
6,9.3
TPOX
8
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Activating mutations in PIK3CB confer resistance to PI3K inhibition and define a novel oncogenic role for p110beta.

Hampton G.M., Lackner M.R.

Cancer Res. 76:1193-1203(2016).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection.

Hsieh J.J.-D., Hakimi A.A.

Nat. Commun. 8:15165.1-15165.10(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Choosing the right cell line for renal cell cancer research.";

Czarnecka A.M.

Mol. Cancer 15:83.1-83.15(2016).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

Data Brief 7:1302-1305(2016).

Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

J. Proteomics 139:77-83(2016).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Human melanoma cells have both nerve growth factor and nerve growth factor-specific receptors on their cell surfaces.

Sherwin S.A., Sliski A.H., Todaro G.J.

Proc. Natl. Acad. Sci. U.S.A. 76:1288-1292(1979).

Human brain tumour cell strains with deficient host-cell reactivation of N-methyl-N'-nitro-N-nitrosoguanidine-damaged adenovirus 5.

Day R.S. 3rd, Ziolkowski C.H.J.

Nature 279:797-799(1979).

Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors.

Fogh J.

Natl. Cancer Inst. Monogr. 49:5-9(1978).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors.

Dosik H., Parks W.P.

J. Natl. Cancer Inst. 51:1417-1423(1973).

Human urologic cancer cell lines.";

Williams R.D.

Invest. Urol. 17:359-363(1980).

Cell culture quality control by rapid isoenzymatic characterization.

Halton D.M., Peterson W.D. Jr., Hukku B.

In Vitro 19:16-24(1983).

Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains.

Yarosh D.B., Foote R.S., Mitra S., Day R.S. 3rd

Carcinogenesis 4:199-205(1983).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Differential expression of the amv gene in human hematopoietic cells.

Aaronson S.A., Wong-Staal F.

Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Mutations of the VHL tumour suppressor gene in renal carcinoma.";

Linehan W.M.

Nat. Genet. 7:85-90(1994).

Identification of the von Hippel-Lindau disease tumor suppressor gene.

Chinault A.C., Maher E.R., Linehan W.M., Zbar B., Lerman M.I.

Science 260:1317-1320(1993).

Synergistic cytotoxicity of cisplatin and topotecan or SN-38 in a panel of eight solid-tumor cell lines in vitro.

Schellens J.H.M.

Cancer Chemother. Pharmacol. 41:307-316(1998).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Combined LOH/CGH analysis proves the existence of interstitial 3p deletions in renal cell carcinoma.

Imreh S., Klein G., Zabarovsky E.R.

Oncogene 19:1392-1399(2000).

Expression of the SART1 tumor rejection antigen in renal cell carcinoma.

Yoshizumi O., Itoh K.

Urol. Res. 28:178-184(2000).

PTEN/MMAC1/TEP1 mutations in human primary renal-cell carcinomas and renal carcinoma cell lines.

Nakatani Y., Hosaka M.

Int. J. Cancer 91:219-224(2001).

Allogeneic hematopoietic cell transplantation for metastatic renal cell carcinoma after nonmyeloablative conditioning: toxicity, clinical response, and immunological response to minor histocompatibility antigens.

Otterud B.E., Leppert M.F., Storb R., Sandmaier B.M.

Clin. Cancer Res. 10:7799-7811(2004).

Comparative antitumor activity of 5-fluorouracil and 5'-deoxy-5-fluorouridine in combination with interferon-alpha in renal cell carcinoma cell lines.

Nakatani T.

Urol. Int. 73:348-353(2004).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma.

Kahnoski R., Yang X.-M.J., Teh B.T.

Cancer Res. 67:3171-3176(2007).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Human tumor cell strains defective in the repair of alkylation damage.

Mattern M.R.

Carcinogenesis 1:21-32(1980).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Loss of PBRM1 expression is associated with renal cell carcinoma progression.

Pawlowski R., Muhl S.M., Sulser T., Krek W., Moch H., Schraml P.

Int. J. Cancer 132:E11-E17(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).