A2058Homo sapiens (Human)Cancer cell line

Also known as: A-2058, A 2058, A2658

🤖 AI SummaryBased on 14 publications

Quick Overview

Human melanoma cell line with known BRAF and NRAS mutations, used in cancer research.

Detailed Summary

The A2058 cell line is a human melanoma-derived cell line characterized by specific genetic mutations in BRAF and NRAS. It is utilized in research to study the molecular mechanisms of melanoma and to evaluate the efficacy of targeted therapies. The cell line has been part of studies investigating the response to temozolomide and other chemotherapeutic agents, as well as the role of NF1 loss in melanoma progression. A2058 is also involved in research on the MAPK signaling pathway and its implications in cancer development and treatment resistance.

Research Applications

Cancer researchTargeted therapy evaluationDrug sensitivity studiesGenetic mutation analysis

Key Characteristics

BRAF mutationNRAS mutationNF1 lossMAPK pathway involvement
Generated on 6/16/2025

Basic Information

Database IDCVCL_1059
SpeciesHomo sapiens (Human)
Tissue SourceLymph node[UBERON:UBERON_0000029]

Donor Information

Age43
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseAmelanotic melanoma
LineageSkin
SubtypeMelanoma
OncoTree CodeMEL

DepMap Information

Source TypeATCC
Source IDACH-000788_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP63p.Arg379Cys (c.1135C>T)Heterozygous-Unknown, Unknown
MutationSimpleTP53p.Val274Phe (c.820G>T)Homozygous-PubMed=30737244, PubMed=29846633
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10,11
D10S1248
14,15
D12S391
22,23
D13S317
13,14
D16S539
9,13
D18S51
13,15
D19S433
14
D1S1656
15,18.3
D21S11
29,30.2
D22S1045
16,17,18
D2S1338
17,18
D2S441
11.3,14
D3S1358
14,15
D5S818
9,12
D7S820
11
D8S1179
12,13
DYS391
11
FGA
21,24
Penta D
9,12
Penta E
10,13
TH01
7,9
TPOX
8
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Metastatic melanoma cell lines do not secrete IL-1beta but promote IL-1beta production from macrophages.

Cheng P., Dummer R., Kerl K., Contassot E., French L.E.

J. Dermatol. Sci. 74:167-169(2014).

Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.

Rosen N., Solit D.B.

Cancer Res. 74:2340-2350(2014).

Functional profiling of live melanoma samples using a novel automated platform.

Schuchter L.M., Clark D.P.

PLoS ONE 7:E52760-E52760(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A high-throughput panel for identifying clinically relevant mutation profiles in melanoma.

Scolyer R.A., Mann G.J., Schmidt C.W., Herington A., Hayward N.K.

Mol. Cancer Ther. 11:888-897(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Genomic and molecular profiling predicts response to temozolomide in melanoma.

Friedman H.S., Nevins J.R., Ali-Osman F., Tyler D.S.

Clin. Cancer Res. 15:502-510(2009).

Confirmation of a BRAF mutation-associated gene expression signature in melanoma.

Johansson P., Pavey S., Hayward N.K.

Pigment Cell Res. 20:216-221(2007).

Lack of extracellular signal-regulated kinase mitogen-activated protein kinase signaling shows a new type of melanoma.

Sharpless N.E.

Cancer Res. 67:1502-1512(2007).

Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.

Yasui K., Misawa-Furihata A., Kawakami Y., Inazawa J.

Oncogene 23:8796-8804(2004).

Microarray expression profiling in melanoma reveals a BRAF mutation signature.

Meltzer P.S., Ringner M., Hayward N.K.

Oncogene 23:4060-4067(2004).

Characterization of human melanoma cell lines according to their migratory properties in vitro.

Quinones L.G., Garcia-Castro I.

In Vitro Cell. Dev. Biol. Anim. 40:35-42(2004).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Liver metastatic ability of human melanoma cell line is associated with losses of chromosomes 4, 9p21-pter and 10p.

Adam Z., Adany R., Ladanyi A., Timar J., Balazs M.

Clin. Exp. Metastasis 18:295-302(2000).

Constitutive transduction of peptide transporter and HLA genes restores antigen processing function and cytotoxic T cell-mediated immune recognition of human melanoma cells.

Coupar B., Qiu L., Parsons P.G., Moss D.J., Khanna R.

Int. J. Cancer 75:590-595(1998).

CDKN2A/p16 is inactivated in most melanoma cell lines.";

Gabrielli B.G., Parsons P.G., Hayward N.K.

Cancer Res. 57:4868-4875(1997).

Expression of the co-stimulatory molecule CD40 on melanoma cells.";

Thomas W.D., Smith M.J., Si Z.-Y., Hersey P.

Int. J. Cancer 68:795-801(1996).

Expression of the co-stimulatory molecule B7 on melanoma cells.";

Hersey P., Si Z.-Y., Smith M.J., Thomas W.D.

Int. J. Cancer 58:527-532(1994).

Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors.

Todaro G.J., Fryling C.M., De Larco J.E.

Proc. Natl. Acad. Sci. U.S.A. 77:5258-5262(1980).

Selection and characterization of human melanoma lines with different liver-colonizing capacity.

Ladanyi A., Timar J., Paku S., Molnar G., Lapis K.

Int. J. Cancer 46:456-461(1990).

Nerve growth factor receptors on human melanoma cells in culture.";

Fabricant R.N., De Larco J.E., Todaro G.J.

Proc. Natl. Acad. Sci. U.S.A. 74:565-569(1977).

Modal karyotype of continuous cell line A2058 (human metastatic melanoma) and its evolution in culture.

Dzhambazov B., Asparuhova D., Koleva L., Popov N.

Caryologia 54:313-317(2001).