ACHNHomo sapiens (Human)Cancer cell line
Also known as: ACHN-1 (Occasionally.), ACHN1 (Occasionally.)
Quick Overview
Renal cell carcinoma cell line for cancer research
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1067 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Pleural effusion[UBERON:UBERON_0000175] |
Donor Information
Age | 22 |
---|---|
Age Category | Adult |
Sex | Male |
Race | caucasian |
Disease Information
Disease | Papillary renal cell carcinoma |
---|---|
Lineage | Kidney |
Subtype | Papillary Renal Cell Carcinoma |
OncoTree Code | PRCC |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000046_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | NF2 | p.Arg57Ter (c.169C>T) | Homozygous | - | from parent cell line ACHN |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection.
Hsieh J.J.-D., Hakimi A.A.
Nat. Commun. 8:15165.1-15165.10(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
Choosing the right cell line for renal cell cancer research.";
Czarnecka A.M.
Mol. Cancer 15:83.1-83.15(2016).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.
Masuishi Y., Kimura Y., Arakawa N., Hirano H.
Data Brief 7:1302-1305(2016).
Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.
Masuishi Y., Kimura Y., Arakawa N., Hirano H.
J. Proteomics 139:77-83(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
Hypoxia-inducible factor (HIF)-independent expression mechanism and novel function of HIF prolyl hydroxylase-3 in renal cell carcinoma.
Masumori N., Tsukamoto T., Sato N.
J. Cancer Res. Clin. Oncol. 140:503-513(2014).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
Cancer Res. 73:4372-4382(2013).
Loss of PBRM1 expression is associated with renal cell carcinoma progression.
Pawlowski R., Muhl S.M., Sulser T., Krek W., Moch H., Schraml P.
Int. J. Cancer 132:E11-E17(2013).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
Kong D.-X., Yamori T.
Bioorg. Med. Chem. 20:1947-1951(2012).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).
Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma.
Kahnoski R., Yang X.-M.J., Teh B.T.
Cancer Res. 67:3171-3176(2007).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
HLA class I and II genotype of the NCI-60 cell lines.";
Morse H.C. 3rd, Stroncek D., Marincola F.M.
J. Transl. Med. 3:11.1-11.8(2005).
Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
Wolf E., Gabius H.-J.
J. Cancer Res. Clin. Oncol. 127:375-386(2001).
PTEN/MMAC1/TEP1 mutations in human primary renal-cell carcinomas and renal carcinoma cell lines.
Nakatani Y., Hosaka M.
Int. J. Cancer 91:219-224(2001).
Expression of the SART1 tumor rejection antigen in renal cell carcinoma.
Yoshizumi O., Itoh K.
Urol. Res. 28:178-184(2000).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
Molecular expression of PSMA mRNA and protein in primary renal tumors.
Lacour B., Philippe M., Loric S.
Int. J. Cancer 80:799-803(1999).
Disialosyl galactosylgloboside as an adhesion molecule expressed on renal cell carcinoma and its relationship to metastatic potential.
Orikasa S., Hakomori S.-i.
Cancer Res. 56:1932-1938(1996).
Contribution of chromosome 9p21-22 deletion to the progression of human renal cell carcinoma.
Mishina M., Habuchi T., Takahashi R., Sugiyama T., Yoshida O.
Jpn. J. Cancer Res. 86:795-799(1995).