ACHNHomo sapiens (Human)Cancer cell line

Also known as: ACHN-1 (Occasionally.), ACHN1 (Occasionally.)

🤖 AI SummaryBased on 13 publications

Quick Overview

Renal cell carcinoma cell line for cancer research

Detailed Summary

The ACHN cell line is a renal cell carcinoma (RCC) cell line derived from a human kidney tumor. It is widely used in cancer research to study the molecular mechanisms of RCC and to screen for potential therapeutic agents. ACHN cells are known for their ability to form tumors in vivo and are frequently used in studies related to renal cancer biology. This cell line has been characterized in multiple studies, including those focusing on gene expression, protein synthesis, and metabolic activities. Research on ACHN has contributed to understanding the genetic and molecular alterations associated with RCC, particularly in the context of clear cell and papillary subtypes. The cell line is also utilized in studies involving drug response and resistance mechanisms.

Research Applications

Cancer researchDrug screeningGene expression analysisProtein synthesis studiesMetabolic activity investigations

Key Characteristics

Renal originTumor formation in vivoUsed in RCC studiesCharacterized in multiple research contexts
Generated on 6/16/2025

Basic Information

Database IDCVCL_1067
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age22
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseasePapillary renal cell carcinoma
LineageKidney
SubtypePapillary Renal Cell Carcinoma
OncoTree CodePRCC

DepMap Information

Source TypeATCC
Source IDACH-000046_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleNF2p.Arg57Ter (c.169C>T)Homozygous-from parent cell line ACHN

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D13S317
12
D16S539
12,13
D18S51
16
D19S433
14
D21S11
30
D2S1338
17
D3S1358
17
D5S818
12
D7S820
9,11
D8S1179
12
FGA
22
Penta D
12
Penta E
16
TH01
8
TPOX
8,11
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection.

Hsieh J.J.-D., Hakimi A.A.

Nat. Commun. 8:15165.1-15165.10(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Choosing the right cell line for renal cell cancer research.";

Czarnecka A.M.

Mol. Cancer 15:83.1-83.15(2016).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

Data Brief 7:1302-1305(2016).

Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

J. Proteomics 139:77-83(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

Hypoxia-inducible factor (HIF)-independent expression mechanism and novel function of HIF prolyl hydroxylase-3 in renal cell carcinoma.

Masumori N., Tsukamoto T., Sato N.

J. Cancer Res. Clin. Oncol. 140:503-513(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Loss of PBRM1 expression is associated with renal cell carcinoma progression.

Pawlowski R., Muhl S.M., Sulser T., Krek W., Moch H., Schraml P.

Int. J. Cancer 132:E11-E17(2013).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma.

Kahnoski R., Yang X.-M.J., Teh B.T.

Cancer Res. 67:3171-3176(2007).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

PTEN/MMAC1/TEP1 mutations in human primary renal-cell carcinomas and renal carcinoma cell lines.

Nakatani Y., Hosaka M.

Int. J. Cancer 91:219-224(2001).

Expression of the SART1 tumor rejection antigen in renal cell carcinoma.

Yoshizumi O., Itoh K.

Urol. Res. 28:178-184(2000).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Molecular expression of PSMA mRNA and protein in primary renal tumors.

Lacour B., Philippe M., Loric S.

Int. J. Cancer 80:799-803(1999).

Disialosyl galactosylgloboside as an adhesion molecule expressed on renal cell carcinoma and its relationship to metastatic potential.

Orikasa S., Hakomori S.-i.

Cancer Res. 56:1932-1938(1996).

Contribution of chromosome 9p21-22 deletion to the progression of human renal cell carcinoma.

Mishina M., Habuchi T., Takahashi R., Sugiyama T., Yoshida O.

Jpn. J. Cancer Res. 86:795-799(1995).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).