BL-41Homo sapiens (Human)Cancer cell line

Also known as: IARC BL 41, IARC-BL-41, IARC BL41, IARC-BL41, IARC/BL 41, IARC/BL41, BL 041, BL 41, BL41

🤖 AI SummaryBased on 12 publications

Quick Overview

BL-41 is a human B-cell lymphoma cell line derived from Burkitt's lymphoma, used in cancer research for studying genetic and mo...

Detailed Summary

BL-41 is a human B-cell lymphoma cell line established from Burkitt's lymphoma, a high-grade B-cell non-Hodgkin lymphoma. It is commonly used in research to investigate the genetic and molecular mechanisms underlying lymphomagenesis. Studies have shown that BL-41 exhibits specific patterns of gene deletions and mutations, particularly in the 9p21 region, which is associated with tumor suppressor genes like MTS1/p16 and MTS2/p15. These alterations contribute to the malignant transformation and progression of the lymphoma. BL-41 is also utilized in studies examining the role of c-Myc in lymphomagenesis and the interactions between genetic and epigenetic factors in cancer development. Its use in drug sensitivity and resistance studies provides insights into potential therapeutic targets and strategies for treating B-cell lymphomas.

Research Applications

Genetic and molecular mechanisms of lymphomagenesisTumor suppressor gene alterations (e.g., MTS1/p16, MTS2/p15)c-Myc involvement in lymphomagenesisDrug sensitivity and resistance studies

Key Characteristics

Homozygous deletions in 9p21 regionExpression of c-MycRelevance to Burkitt's lymphoma
Generated on 6/16/2025

Basic Information

Database IDCVCL_1087
SpeciesHomo sapiens (Human)

Donor Information

Age8
Age CategoryPediatric
SexMale
Racecaucasian

Disease Information

DiseaseBurkitt lymphoma
LineageLymphoid
SubtypeBurkitt Lymphoma
OncoTree CodeBL

DepMap Information

Source TypeDSMZ
Source IDACH-000245_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg248Gln (c.743G>A)UnspecifiedSomatic mutation acquired during proliferationPubMed=20575032

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10,11
D13S317
8,11
D16S539
12
D18S51
15,19
D19S433
14,16
D21S11
31.2
D2S1338
17,21
D3S1358
15,18
D5S818
11,13
D7S820
9,11
D8S1179
12,14
FGA
24
Penta D
11,12
Penta E
11,12
TH01
7,9.3
TPOX
7,8
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.

O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.

J. Virol. 89:713-729(2015).

Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.

Vettorazzi E., Bokemeyer C., Dierlamm J.

Genes Chromosomes Cancer 53:497-515(2014).

Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.

Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.

Nature 490:116-120(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Expression of the ULBP ligands for NKG2D by B-NHL cells plays an important role in determining their susceptibility to rituximab-induced ADCC.

Mori F., Ding J.-M., Komatsu H., Iida S., Ueda R.

Int. J. Cancer 125:212-221(2009).

Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas.

Martinez-Climent J.A.

Blood 109:271-280(2007).

Genome-wide search for loss of heterozygosity in Burkitt lymphoma cell lines.

Eisinger F., Longy M., Romeo G., Lenoir G.M., Birnbaum D.

Genes Chromosomes Cancer 33:217-224(2002).

Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.

Magrath I.T., Bhatia K.G.

Cancer Res. 59:696-703(1999).

p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.

Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.

Blood 91:1680-1687(1998).

Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.

Pike S.E., Gupta G., Magrath I.T., Tosato G.

Cancer Res. 57:2508-2515(1997).

The (2;5)(p23;q35) translocation in cell lines derived from malignant lymphomas: absence of t(2;5) in Hodgkin-analogous cell lines.

Quentmeier H., Drexler H.G.

Leukemia 10:142-149(1996).

Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoblastic leukaemia cell lines.

Uppenkamp M.J., Nowrousian M.R., Seeber S., Opalka B.

Br. J. Haematol. 91:350-354(1995).

Distinct reactivity of Burkitt's lymphoma cell lines with eight monoclonal antibodies correlated with the ethnic origin.

Lenoir G.M.

J. Natl. Cancer Inst. 73:841-847(1984).

The use of lymphomatous and lymphoblastoid cell lines in the study of Burkitt's lymphoma.

Lenoir G.M., Vuillaume M., Bonnardel C.

IARC Sci. Publ. 60:309-318(1985).

Immunophenotypic classification of 28 Burkitt cell lines with monoclonal antibodies and reagent selection for bone-marrow purging.

Dore J.-F., Lenoir G.M.

IARC Sci. Publ. 60:447-452(1985).

Down-regulation of class I HLA antigens and of the Epstein-Barr virus-encoded latent membrane protein in Burkitt lymphoma lines.

Klein G.

Proc. Natl. Acad. Sci. U.S.A. 84:4567-4571(1987).

B-cell maturation stages of Burkitt's lymphoma cell lines according to Epstein-Barr virus status and type of chromosome translocation.

Manel A.-M., Vincent C., Bryon P.-A.

J. Natl. Cancer Inst. 78:235-242(1987).

Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.

Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.

Int. J. Cancer 39:211-218(1987).

Epstein-Barr virus (EBV) induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells.

Lenoir G.M.

Proc. Natl. Acad. Sci. U.S.A. 84:8060-8064(1987).

Reversion of tumorigenicity and decreased agarose clonability after EBV conversion of an IgH/myc translocation-carrying BL line.

Ehlin-Henriksson B., Masucci M.G., Klein G., Klein E.

Int. J. Cancer 43:273-278(1989).

p53 is frequently mutated in Burkitt's lymphoma cell lines.";

Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.

EMBO J. 10:2879-2887(1991).

Web Resources