BT-549Homo sapiens (Human)Cancer cell line
Also known as: BT 549, BT.549, BT549, HTB-122 (Based on the ATCC catalog number.)
Quick Overview
Human breast cancer cell line for cancer research and drug development.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1092 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Breast[UBERON:UBERON_0000310] |
Donor Information
Age | 72 |
---|---|
Age Category | Adult |
Sex | Female |
Race | caucasian |
Subtype Features | basal_B TNBC |
Disease Information
Disease | Invasive breast carcinoma of no special type |
---|---|
Lineage | Breast |
Subtype | Breast Invasive Carcinoma, NOS |
OncoTree Code | BRCNOS |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000288_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
Gene fusion | CLTC | CLTC-VMP1 | - | - | from parent cell line HCC1954 |
MutationSimple | PTEN | p.Val275fs*1 (c.821delG) (p.W274fs) | Heterozygous | - | from parent cell line BT-549 |
MutationSimple | RB1 | c.265_607del343 | Homozygous | - | from parent cell line BT-549 |
MutationSimple | TP53 | p.Arg249Ser (c.747G>C) | Homozygous | - | Unknown |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
Cancer Res. 73:4372-4382(2013).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Improving the metabolic fidelity of cancer models with a physiological cell culture medium.
Kalna G., Nixon C., Blyth K., Gottlieb E., Tardito S.
Sci. Adv. 5:eaau7314.1-eaau7314.14(2019).
Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.
Lakhani S.R.
Breast Cancer Res. Treat. 167:289-301(2018).
Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.
Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.
J. Proteome Res. 16:1391-1400(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
The proteomic landscape of triple-negative breast cancer.";
Irie H.Y., Lee S.-I., Blau C.A., Villen J.
Cell Rep. 11:630-644(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).
Modeling precision treatment of breast cancer.";
Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.
Genome Biol. 14:R110.1-R110.14(2013).
Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.
Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.
Breast Cancer Res. Treat. 142:237-255(2013).
Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.
McCormick F., Gray J.W.
Cancer Cell 24:450-465(2013).
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
Human breast tumor cells in culture; new concepts in mammary carcinogenesis.
Lasfargues E.Y., Coutinho W.G.
(In book chapter) New frontiers in mammary pathology; Hollmann K.H., de Brux J., Verley J.M. (eds.); pp.117-143; Plenum Press; New York; USA (1981).
Cell lines from human breast.";
Leibovitz A.
(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994).
Breast cancer stem cells: tumourspheres and implications for therapy.";
Morrison B.J.
Thesis PhD (2010); Griffith University; Brisbane; Australia.
Mutations in p53 as potential molecular markers for human breast cancer.
Runnebaum I.B., Nagarajan M., Bowman M., Soto D., Sukumar S.
Proc. Natl. Acad. Sci. U.S.A. 88:10657-10661(1991).
Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.
Gershwin M.E., Lentz D., Owens R.B.
Exp. Cell Biol. 52:361-370(1984).
Characterization of four doxorubicin adapted human breast cancer cell lines with respect to chemotherapeutic drug sensitivity, drug resistance associated membrane proteins and glutathione transferases.
Mannervik B., Bergh J.
Anticancer Res. 13:1425-1430(1993).
Adhesion of human breast carcinoma to extracellular matrix proteins is modulated by galectin-3.
Warfield P.R., Nangia-Makker P., Raz A., Ochieng J.
Invasion Metastasis 17:101-112(1997).
Lack of relationship between CDK activity and G1 cyclin expression in breast cancer cells.
Sweeney K.J., Swarbrick A., Sutherland R.L., Musgrove E.A.
Oncogene 16:2865-2878(1998).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping.
Isola J.J., Larsson C.
Genes Chromosomes Cancer 28:308-317(2000).
Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.
Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.
Cancer Res. 60:4519-4525(2000).
Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping.
Isola J.J.
Cancer Genet. Cytogenet. 126:1-7(2001).
The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells.
Domann F.E., Futscher B.W.
Neoplasia 6:187-194(2004).
Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.
Edwards P.A.W., Caldas C.
Carcinogenesis 26:923-930(2005).
HLA class I and II genotype of the NCI-60 cell lines.";
Morse H.C. 3rd, Stroncek D., Marincola F.M.
J. Transl. Med. 3:11.1-11.8(2005).
BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.
van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.
Cancer Res. 66:41-45(2006).
Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.
Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.
Breast Cancer Res. Treat. 99:97-101(2006).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.
Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.
Cancer Cell 10:515-527(2006).
Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.
Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.
Cancer Biol. Ther. 7:699-708(2008).
The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.
Petersen O.W., Gray J.W., Bissell M.J.
Mol. Oncol. 1:84-96(2007).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).
Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.
Pollack J.R.
PLoS ONE 4:E6146-E6146(2009).
Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.
den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.
Breast Cancer Res. Treat. 121:53-64(2010).
Systems-level modeling of cancer-fibroblast interaction.";
Finn S.P., Loda M., Mahmood U., Ramaswamy S.
PLoS ONE 4:E6888-E6888(2009).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Lung cancer cell lines as tools for biomedical discovery and research.
Gazdar A.F., Girard L., Lockwood W.W., Lam W.L., Minna J.D.
J. Natl. Cancer Inst. 102:1310-1321(2010).
Induction of tumorigenicity by galectin-3 in a nontumorigenic human breast-carcinoma cell-line.
Nangia-Makker P., Thompson E., Hogan C., Ochieng J., Raz A.
Int. J. Oncol. 7:1079-1087(1995).
Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer.
Chavez K.J., Garimella S.V., Lipkowitz S.
Breast Dis. 32:35-48(2010).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
Rottapel R., Neel B.G., Moffat J.
Cancer Discov. 2:172-189(2012).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
Molecular characterisation of cell line models for triple-negative breast cancers.
Reis-Filho J.S., Tutt A.
BMC Genomics 13:619.1-619.14(2012).
miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.
Martens J.W.M.
Breast Cancer Res. 15:R33.1-R33.17(2013).