Ca9-22Homo sapiens (Human)Cancer cell line

Also known as: Ca922, CA922, Ca 9-22, CA9-22

🤖 AI SummaryBased on 16 publications

Quick Overview

Human oral squamous cell carcinoma cell line with E-cadherin expression and potential for cancer research.

Detailed Summary

Ca9-22 is a human oral squamous cell carcinoma cell line derived from gingival tissue. It exhibits strong E-cadherin expression, which is associated with cell adhesion and differentiation. Research on Ca9-22 has focused on the role of E-cadherin in tumor invasiveness and the identification of genetic alterations such as homozygous deletions in the FAT gene. Additionally, Ca9-22 has been used to study PIK3CA mutations and their implications in cancer progression. The cell line is utilized in studies related to head and neck squamous cell carcinoma, contributing to understanding of molecular mechanisms in oral cancer development and potential therapeutic targets.

Research Applications

E-cadherin expression and functionGenomic alterations in FAT genePIK3CA mutationsHead and neck squamous cell carcinoma research

Key Characteristics

Strong E-cadherin expressionHomozygous deletions in FAT genePIK3CA mutationsOral cancer model
Generated on 6/16/2025

Basic Information

Database IDCVCL_1102
SpeciesHomo sapiens (Human)
Tissue SourceOral cavity, gingiva[UBERON:UBERON_0001828]

Donor Information

Age43
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the oral cavity
LineageHead and Neck
SubtypeOral Cavity Squamous Cell Carcinoma
OncoTree CodeOCSC

DepMap Information

Source TypeRIKEN
Source IDACH-002043_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg248Trp (c.742C>T)HomozygousSomatic mutation acquired during proliferationfrom parent cell line VCaP

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
12
D13S317
11
D16S539
9,10
D5S818
12
D7S820
11,13
TH01
6
TPOX
8,11
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Genomic characterization of human papillomavirus-positive and -negative human squamous cell cancer cell lines.

Frederick M.J., Myers J.N., Pickering C.R., Johnson F.M.

Oncotarget 8:86369-86383(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites.

Grandis J.R., Sidransky D., Heldin N.-E., Myers J.N.

Clin. Cancer Res. 17:7248-7264(2011).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

The galanin signaling cascade is a candidate pathway regulating oncogenesis in human squamous cell carcinoma.

Sasaki K., Hanazawa T., Okamoto Y., Hata A.

Genes Chromosomes Cancer 48:132-142(2009).

Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas.

Murugan A.K., Hong N.T., Fukui Y., Munirajan A.K., Tsuchida N.

Int. J. Oncol. 32:101-111(2008).

PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation.

Kozaki K.-i., Amagasa T., Inazawa J.

Oncogene 26:7921-7932(2007).

Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array.

Hamakawa H.

Oncogene 26:5300-5308(2007).

PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma.

Omura K., Inazawa J.

Cancer Sci. 97:1351-1358(2006).

Detection of human papillomavirus-16 and HPV-18 DNA in normal, dysplastic, and malignant oral epithelium.

Sugiyama M., Bhawal U.K., Dohmen T., Ono S., Miyauchi M., Ishikawa T.

Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 95:594-600(2003).

A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck.

Song Y.-S., Appella E., Whiteside T.L., DeLeo A.B.

Clin. Cancer Res. 6:979-986(2000).

Expression of E-cadherin in oral cancer cell lines and its relationship to invasiveness in SCID mice in vivo.

Hoteiya T., Hayashi E., Satomura K., Kamata N., Nagayama M.

J. Oral Pathol. Med. 28:107-111(1999).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Expression of bone morphogenetic proteins of human neoplastic epithelial cells.

Hatakeyama S., Gao Y.-H., Ohara-Nemoto Y., Kataoka H., Satoh M.

Biochem. Mol. Biol. Int. 42:497-505(1997).

CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.

Itoh K.

Cell. Immunol. 177:176-181(1997).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

A new human cell line derived from human carcinoma of the gingiva. I. Its establishment and morphological studies.

Horikoshi M., Kimura Y., Nagura H., Ono T., Ito H.

Nihon Koku Geka Gakkai Zasshi 20:100-106(1974).

Growth of the malignant and nonmalignant human squamous cells in a protein-free defined medium.

Rikimaru K., Toda H., Tachikawa N., Kamata N., Enomoto S.

In Vitro Cell. Dev. Biol. 26:849-856(1990).

Most human squamous cell carcinomas in the oral cavity contain mutated p53 tumor-suppressor genes.

Sakai E., Tsuchida N.

Oncogene 7:927-933(1992).

Studies on lactate dehydrogenase isoenzymes in a cell line (Ca 9-22) derived from carcinoma of the gingiva.

Kimura Y.

Kokubyo Gakkai Zasshi 45:20-35(1978).

Lymphocyte mediated cytotoxicity to oral squamous cell carcinoma cell line (Ca 9-22).

Horikoshi M., Katsumura A., Fujibayashi T., Soda T., Itoh H.

Nihon Koku Geka Gakkai Zasshi 23:619-625(1977).

Web Resources