CADO-ES1Homo sapiens (Human)Cancer cell line
Also known as: Center for Adult Diseases Osaka-Ewing Sarcoma 1, ESCADO1, Cado-ES, CADO-ES, CADOES1, CADO ES1, Cado-ES-1, CADO-ES-1
Quick Overview
CADO-ES1 is a human Ewing sarcoma cell line established from malignant pleural effusion, showing both anchorage-dependent and i...
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1103 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Pleural effusion[UBERON:UBERON_0000175] |
Donor Information
Age | 19 |
---|---|
Age Category | Adult |
Sex | Female |
Race | asian |
Subtype Features | EWS-ERG |
Disease Information
Disease | Ewing sarcoma |
---|---|
Lineage | Bone |
Subtype | Ewing Sarcoma |
OncoTree Code | ES |
DepMap Information
Source Type | DSMZ |
---|---|
Source ID | ACH-000210_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationNone reported | TP53 | - | - | - | PubMed=19787792 |
Gene fusion | ERG | EWSR1-ERG, EWS-ERG | - | In frame | PubMed=9738976 |
Gene deletion | CDKN2A | - | Homozygous | Possible | PubMed=26870271 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Cross-contamination meets misclassification: awakening of CHP-100 from sleeping beauty sleep -- a reviewed model for Ewing's sarcoma.
Nagel S., Steenpass L., Becker J.
Int. J. Cancer 148:2608-2613(2021).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells.
Muller I., Walles H., Hartmann W., Rossig C.
Mol. Ther. 27:933-946(2019).
Defining a characteristic gene expression set responsible for cancer stem cell-like features in a sub-population of Ewing sarcoma cells CADO-ES1.
Hotfilder M., Mallela N., Seggewiss J., Dirksen U., Korsching E.
Int. J. Mol. Sci. 19:3908.1-3908.23(2018).
T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G.
Meltzer J., Farwick N., Greune L., Rossig C.
Oncotarget 9:6536-6549(2018).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
CXCL14, CXCR7 expression and CXCR4 splice variant ratio associate with survival and metastases in Ewing sarcoma patients.
Schmidt T., Szuhai K., Hogendoorn P.C.W.
Eur. J. Cancer 51:2624-2633(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types.
West R.B., Pollack J.R.
PLoS Genet. 9:E1003464-E1003464(2013).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways.
Borsu L., Barr F.G., Ladanyi M.
Clin. Cancer Res. 18:748-757(2012).
1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.
Debiec-Rychter M., Schaefer K.-L., de Alava E.
Oncogene 31:1287-1298(2012).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort.
Buerger H., Aigner T., Gabbert H.E., Poremba C.
Genes Chromosomes Cancer 49:40-51(2010).
Immunocytochemical analysis of cell lines derived from solid tumors.
Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
J. Histochem. Cytochem. 49:1369-1378(2001).