CFPAC-1Homo sapiens (Human)Cancer cell line

Also known as: CFPac-1, CF PAC-1, CF-PAC1, CF-Pac1, CF Pac1, CFPAC1, CFPac1, CFPAC, CFPANC1

🤖 AI SummaryBased on 13 publications

Quick Overview

CFPAC-1 is a pancreatic ductal adenocarcinoma cell line derived from a cystic fibrosis patient, used for studying pancreatic ca...

Detailed Summary

CFPAC-1 is a human pancreatic ductal adenocarcinoma cell line established from a patient with cystic fibrosis (CF). It is widely used in research to study the genetic and molecular mechanisms of pancreatic cancer, particularly focusing on mutations in key oncogenes and tumor suppressor genes. This cell line exhibits characteristics such as high-level amplifications, homozygous deletions, and specific genetic alterations that are relevant to pancreatic cancer progression. CFPAC-1 is also utilized in drug sensitivity studies to identify potential therapeutic targets and evaluate the efficacy of anticancer agents. Its genetic profile includes mutations in K-ras, p53, p16, and DPC4, which are commonly associated with pancreatic cancer. The cell line's ability to maintain genetic stability over multiple passages makes it a valuable tool for long-term studies.

Research Applications

Genetic and molecular mechanisms of pancreatic cancerDrug sensitivity and resistance studiesIdentification of therapeutic targetsAnalysis of genomic alterations and copy number variations

Key Characteristics

Mutations in K-ras, p53, p16, and DPC4High-level amplifications and homozygous deletionsCystic fibrosis-associated genetic backgroundStable genetic profile over multiple passages
Generated on 6/16/2025

Basic Information

Database IDCVCL_1119
SpeciesHomo sapiens (Human)
Tissue SourceLiver[UBERON:UBERON_0002107]

Donor Information

Age26
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseCystic fibrosis
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeATCC
Source IDACH-000138_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionSMAD4-Homozygous-from parent cell line BxPC-3
MutationSimpleCFTRp.Phe508del (c.1521_1523delCTT)HomozygousIn the 2 genomic alleles while the transfected copies are wildtypePubMed=20224973
MutationSimpleKRASp.Gly12Val (c.35G>T)HeterozygousAcquiredUnknown, Unknown
MutationSimpleTP53p.Cys242Arg (c.724T>C)Homozygous-from parent cell line CFPAC-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10
D12S391
17
D13S317
12
D16S539
9,11
D18S51
12
D19S433
13,15
D21S11
30,31.2
D2S1338
18,23
D2S441
10,14
D3S1358
16
D5S818
10,11
D6S1043
20
D7S820
8,10
D8S1179
11,15
FGA
21,22
Penta D
11,13
Penta E
10,12
TH01
8
TPOX
8
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Distribution of characteristic mutations in native ductal adenocarcinoma of the pancreas and pancreatic cancer cell lines.

Saeger H.-D.

Cell Biol. Res. Ther. 2:1000104.1-1000104.5(2013).

The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.

Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.

J. Proteomics Bioinformatics 2:1-18(2009).

A cystic fibrosis pancreatic adenocarcinoma cell line.";

Frizzell R.A.

Proc. Natl. Acad. Sci. U.S.A. 87:4012-4016(1990).

Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.

Meltzer P.S., Ried T.

Am. J. Pathol. 154:525-536(1999).

Higher frequency of DPC4/Smad4 alterations in pancreatic cancer cell lines than in primary pancreatic adenocarcinomas.

Chaloupka B., Deiss Y., Simon B., Schudy A.

Cancer Lett. 139:43-49(1999).

Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.

Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.

Int. J. Cancer 91:350-358(2001).

Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.

Lohr J.-M., Scarpa A.

Virchows Arch. 439:798-802(2001).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.

Kern S.E., Goggins M.G., Hruban R.H.

Cancer Res. 63:8614-8622(2003).

Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

Veltman J.A., van Kessel A.G., Hoglund M.

Cancer Res. 64:3052-3059(2004).

Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.

Hirohashi S.

Pancreas 29:193-203(2004).

Established cell lines used in cystic fibrosis research.";

Gruenert D.C., Willems M., Cassiman J.-J., Frizzell R.A.

J. Cyst. Fibros. 3:191-196(2004).

Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.

Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.

Oncogene 24:1794-1801(2005).

Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.

Kern S.E.

Cancer Res. 66:7920-7928(2006).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

Genome-wide analysis of pancreatic cancer using microarray-based techniques.

Harada T., Chelala C., Crnogorac-Jurcevic T., Lemoine N.R.

Pancreatology 9:13-24(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Phenotype and genotype of pancreatic cancer cell lines.";

Scaife C.L., Firpo M.A., Mulvihill S.J.

Pancreas 39:425-435(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.

Biankin A.V., Wu J.-M., Daly R.J.

Mol. Cell. Proteomics 15:2671-2685(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).