D283 MedHomo sapiens (Human)Cancer cell line

Also known as: H283, Med 283, D283, D-283, D283-Med, D283Med, D283MED, D-283MED, D-283 Med-C, D-283 Med, D283_Med, D283-MED, D283 MED, D283 MR (Occasionally.)

🤖 AI SummaryBased on 12 publications

Quick Overview

Human medulloblastoma cell line with potential for research in cancer biology and therapy.

Detailed Summary

The D283 Med cell line is derived from a human medulloblastoma and is used in cancer research. It exhibits characteristics such as the ability to form spheroids in vitro and has been utilized in studies related to tumor growth and therapeutic responses. This cell line is valuable for investigating the molecular mechanisms underlying medulloblastoma and for testing potential treatments. Research involving D283 Med has contributed to understanding the role of specific genes and pathways in tumor progression and has been used in preclinical models to evaluate drug efficacy.

Research Applications

Cancer biology researchTherapeutic drug testingMolecular mechanism studies

Key Characteristics

In vitro spheroid formationPotential for preclinical modelsGene expression studies
Generated on 6/16/2025

Basic Information

Database IDCVCL_1155
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age6
Age CategoryPediatric
SexMale
Racecaucasian
Subtype FeaturesMYC_Exp

Disease Information

DiseaseMedulloblastoma
LineageCNS/Brain
SubtypeMedulloblastoma
OncoTree CodeMBL

DepMap Information

Source TypeATCC
Source IDACH-000055_source

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
9,12
D13S317
8,10
D16S539
11
D18S51
16,18
D19S433
13,14
D21S11
28,30.2
D2S1338
17,23
D3S1358
15
D5S818
11
D7S820
10
D8S1179
12,13
FGA
20,23
Penta D
9,13
Penta E
7,10
TH01
7
TPOX
8,11
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Human medulloblastoma cell lines: investigating on cancer stem cell-like phenotype.

Pothier A., Merla C., Mancuso M.

Cancers (Basel) 12:226.1-226.14(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Data on the number and frequency of scientific literature citations for established medulloblastoma cell lines.

Ivanov D.P., Walker D.A., Coyle B., Grabowska A.M.

Data Brief 9:696-698(2016).

In vitro models of medulloblastoma: choosing the right tool for the job.

Ivanov D.P., Coyle B., Walker D.A., Grabowska A.M.

J. Biotechnol. 236:10-25(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

PID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas.

Pfister S.M., Kool M., Sposto R., Asgharzadeh S.

Clin. Cancer Res. 20:827-836(2014).

BET bromodomain inhibition of MYC-amplified medulloblastoma.";

Bradner J.E., Beroukhim R., Cho Y.-J.

Clin. Cancer Res. 20:912-925(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma.

Pomeroy S.L., Cho Y.-J.

Neuro-oncol. 13:165-175(2011).

Neuralized1 causes apoptosis and downregulates Notch target genes in medulloblastoma.

Marquez V.E., Cho Y.-J., Pomeroy S.L.

Neuro-oncol. 12:1244-1256(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Hypercalcaemia in relapsed medulloblastoma 8 years post-diagnosis; evidence to support PTHrP production by medulloblastoma cells.

Hale J., Cheetham T.D.

Horm. Res. 66:268-272(2006).

Protein profiles of medulloblastoma cell lines DAOY and D283: identification of tumor-related proteins and principles.

Peyrl A., Krapfenbauer K., Slavc I., Yang J.-W., Strobel T., Lubec G.

Proteomics 3:1781-1800(2003).

Establishment and characterization of the human medulloblastoma cell line and transplantable xenograft D283 Med.

Wikstrand C.J., Halperin E.C., Bigner D.D.

J. Neuropathol. Exp. Neurol. 44:592-605(1985).

A rapidly dividing human medulloblastoma cell line (D283 MED) expresses all three neurofilament subunits.

Trojanowski J.Q., Friedman H.S., Burger P.C., Bigner D.D.

Am. J. Pathol. 126:358-363(1987).

Amplification of the c-myc gene in human medulloblastoma cell lines and xenografts.

Bigner S.H., Friedman H.S., Vogelstein B., Oakes W.J., Bigner D.D.

Cancer Res. 50:2347-2350(1990).

Medulloblastoma cell-substrate interaction in vitro.";

Wikstrand C.J., Friedman H.S., Bigner D.D.

Invasion Metastasis 11:310-324(1991).

Brain tumors.";

Ali-Osman F.

(In book chapter) Human cell culture. Vol. 2. Cancer cell lines part 2; Masters J.R.W., Palsson B.O. (eds.); pp.167-184; Kluwer Academic Publishers; New York; USA (1999).