FaDuHomo sapiens (Human)Cancer cell line

Also known as: FaDU, FADU, JHU-SCC-FaDu

🤖 AI SummaryBased on 14 publications

Quick Overview

Human hypopharyngeal squamous cell carcinoma cell line used in cancer research.

Detailed Summary

The FaDu cell line is a human hypopharyngeal squamous cell carcinoma cell line derived from a squamous cell carcinoma of the hypopharynx. It is widely used in cancer research for studying tumor biology, drug resistance mechanisms, and therapeutic responses. FaDu cells have been utilized in studies involving multidrug resistance, gene expression profiling, and in vivo tumor xenograft models. Research has shown that FaDu cells exhibit specific genetic alterations, including mutations in the TP53 gene and alterations in the PARD3 gene, which are associated with cancer progression and therapeutic resistance. These characteristics make FaDu a valuable model for investigating the molecular mechanisms underlying head and neck squamous cell carcinomas.

Research Applications

Cancer biologyDrug resistance mechanismsGene expression profilingIn vivo tumor xenograft modelsTP53 mutation analysisPARD3 gene disruption studies

Key Characteristics

Hypopharyngeal originSquamous cell carcinomaMultidrug resistanceTP53 mutationsPARD3 gene alterations
Generated on 6/16/2025

Basic Information

Database IDCVCL_1218
SpeciesHomo sapiens (Human)
Tissue SourcePharynx, hypopharynx[UBERON:UBERON_0001051]

Donor Information

Age56
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseHypopharyngeal squamous cell carcinoma
LineageHead and Neck
SubtypeHypopharynx Squamous Cell Carcinoma
OncoTree CodeHPHSC

DepMap Information

Source TypeATCC
Source IDACH-000846_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleCDKN2Ac.151-1G>TUnspecifiedSplice acceptor mutationPubMed=33802339
MutationSimpleFAT1p.Lys3277Asnfs*4 (c.9828delG) (p.Gly3276fs)Heterozygous-from parent cell line FaDu
MutationSimpleTP53c.376-1G>A (p.Tyr126_Lys132del, c.376_396del21)UnspecifiedSplice acceptor mutationfrom parent cell line U-1285
MutationSimpleTP53p.Arg248Leu (c.743G>T)Unspecified-PubMed=18487078

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
Not_detected
CSF1PO
12
D10S1248
15,17
D12S391
17,21
D13S317
8,9
D16S539
11
D18S51
16
D19S433
14,16
D1S1656
16,16.3
D21S11
31
D22S1045
11
D2S1338
19
D2S441
11
D3S1358
17,18
D5S818
12
D7S820
11,12
D8S1179
13
FGA
25
Penta D
11
Penta E
17,19
TH01
8
TPOX
11
vWA
15,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Fanconi anemia-isogenic head and neck cancer cell line pairs: a basic and translational science resource.

Smogorzewska A., Monnat R.J. Jr.

Int. J. Cancer 153:183-196(2023).

Head and neck tumor cell lines.";

Carey T.E.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.79-120; Academic Press; New York; USA (1994).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Frequent p53 mutations in head and neck cancer.";

Casey G.

Cancer Res. 52:5997-6000(1992).

Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines.

Yee C., Krishnan-Hewlett I., Baker C.C., Schlegel R., Howley P.M.

Am. J. Pathol. 119:361-366(1985).

Multiparametric flow cytometry of human squamous cell carcinoma lines from the head and neck.

Wustrow T.P.U., Raffael A., Valet G.K.

Otolaryngol. Head Neck Surg. 98:552-557(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

A new human cell line (FaDu) from a hypopharyngeal carcinoma.";

Rangan S.R.S.

Cancer 29:117-121(1972).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Amplification and expression of EMS-1 (cortactin) in head and neck squamous cell carcinoma cell lines.

Somers K.D.

Oncogene 12:31-35(1996).

Inhibition of head and neck squamous cell carcinoma growth and invasion by the calcium influx inhibitor carboxyamido-triazole.

Schechter G.L., Spoonster J.R., Kohn E.C., Somers K.D.

Clin. Cancer Res. 3:1915-1921(1997).

Splicing mutations in TP53 in human squamous cell carcinoma lines influence immunohistochemical detection.

Eicheler W., Zips D., Dorfler A., Grenman R., Baumann M.

J. Histochem. Cytochem. 50:197-204(2002).

Phosphoinositide kinase-3 status associated with presence or absence of human papillomavirus in head and neck squamous cell carcinomas.

Yarbrough W.G., Whigham A., Brown B., Roach M., Slebos R.J.C.

Int. J. Radiat. Oncol. Biol. Phys. 69:S98-S101(2007).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

FaDu cell characteristics induced by multidrug resistance.";

Ma J.-K., Lu S.-M., Yu L., Tian J.-J., Li J.-F., Wang H.-B., Xu W.

Oncol. Rep. 26:1189-1195(2011).

Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites.

Grandis J.R., Sidransky D., Heldin N.-E., Myers J.N.

Clin. Cancer Res. 17:7248-7264(2011).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

DNA-bound platinum is the major determinant of cisplatin sensitivity in head and neck squamous carcinoma cells.

Honeywell R.J., Peters G.J., Braakhuis B.J.M., Brakenhoff R.H.

PLoS ONE 8:E61555-E61555(2013).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Upregulated interleukin-6 expression contributes to erlotinib resistance in head and neck squamous cell carcinoma.

Simons A.L.

Mol. Oncol. 9:1371-1383(2015).

Defects in the Fanconi anemia pathway and chromatid cohesion in head and neck cancer.

Ylstra B., Joenje H., Feller S.M., Brakenhoff R.H.

Cancer Res. 75:3543-3553(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

JunB promotes cell invasion, migration and distant metastasis of head and neck squamous cell carcinoma.

Ito Y., Myers J.N., Oridate N.

J. Exp. Clin. Cancer Res. 35:6.1-6.12(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Spheroid-based 3D cell cultures enable personalized therapy testing and drug discovery in head and neck cancer.

Schwenk-Zieger S., Stauber R.H., Baumeister P., Becker S.

Anticancer Res. 37:2201-2210(2017).

Characterization of FaDu-R, a radioresistant head and neck cancer cell line, and cancer stem cells.

Cho K.-J., Park E.-J., Kim M.-S., Joo Y.-H.

Auris Nasus Larynx 45:566-573(2018).

Genomic characterization of human papillomavirus-positive and -negative human squamous cell cancer cell lines.

Frederick M.J., Myers J.N., Pickering C.R., Johnson F.M.

Oncotarget 8:86369-86383(2017).

Evofosfamide for the treatment of human papillomavirus-negative head and neck squamous cell carcinoma.

Hart C.P., Print C.G., Wilson W.R., Curran M.A., Hunter F.W.

JCI Insight 3:e122204.1-e122204.19(2018).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Characterization of a head and neck cancer-derived cell line panel confirms the distinct TP53-proficient copy number-silent subclass.

Leemans C.R., Wolthuis R.M.F., Brakenhoff R.H.

Oral Oncol. 98:53-61(2019).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Genotyping and characterization of HPV status, hypoxia, and radiosensitivity in 22 head and neck cancer cell lines.

Gottgens E.-L., Ansems M., Leenders W.P.J., Bussink J., Span P.N.

Cancers (Basel) 13:1069.1-1069.12(2021).

Analysis of ceRNA network of differentially expressed genes in FaDu cell line and a cisplatin-resistant line derived from it.

Xiao J., Li W.

PeerJ 9:e11645.1-e11645.15(2021).