GP5dHomo sapiens (Human)Cancer cell line

Also known as: GP5D, Gp5D, Gp5d

🤖 AI SummaryBased on 15 publications

Quick Overview

Human colorectal cancer cell line with known mutations and drug response profiles.

Detailed Summary

GP5d is a human colorectal cancer cell line derived from a colon tumor. It is widely used in cancer research due to its well-characterized genetic profile and response to various therapeutic agents. The cell line exhibits specific mutations that influence its behavior and drug sensitivity, making it a valuable model for studying colorectal cancer mechanisms and treatment strategies. Research on GP5d has contributed to understanding the role of genetic alterations in cancer progression and therapeutic resistance.

Research Applications

Cancer geneticsDrug response profilingMolecular mechanisms of tumorigenesis

Key Characteristics

Mutated APC geneKRAS mutationsMicrosatellite instability (MSI)Response to 5-fluorouracil
Generated on 6/16/2025

Basic Information

Database IDCVCL_1235
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age71
Age CategoryAdult
SexFemale

Disease Information

DiseaseColon adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeSigma-Aldrich
Source IDACH-001345_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimplePIK3CAp.His1047Arg (c.3140A>G)Unspecified-PubMed=25926053, PubMed=20570890
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
9,12
D13S317
9,12
D16S539
11,13
D18S51
12,13
D21S11
29,30
D3S1358
16,18
D5S818
12
D7S820
9,11
D8S1179
10,12
FGA
23
Penta D
12,13
Penta E
7,10
TH01
7,9.3
TPOX
8,11
vWA
17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells.

Pignatelli M., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 96:2316-2321(1999).

Two newly established cell lines derived from the same colonic adenocarcinoma exhibit differences in EGF-receptor ligand and adhesion molecule expression.

Alexander P., Davies D.E.

Int. J. Cancer 62:48-57(1995).

Web Resources