HCC1143Homo sapiens (Human)Cancer cell line

Also known as: Hamon Cancer Center 1144, HCC-1143

🤖 AI SummaryBased on 10 publications

Quick Overview

Human breast cancer cell line with known genetic and molecular characteristics.

Detailed Summary

HCC1143 is a human breast cancer cell line derived from a breast tumor. It is used in research to study the molecular mechanisms of breast cancer, including genetic mutations, gene expression, and drug responses. This cell line has been characterized in multiple studies for its genetic profile and is part of various cancer cell line panels. It is particularly useful for investigating the role of specific genes and pathways in cancer progression and therapeutic resistance.
Generated on 6/16/2025

Basic Information

Database IDCVCL_1245
SpeciesHomo sapiens (Human)
Tissue SourceBreast[UBERON:UBERON_0000310]

Donor Information

Age52
Age CategoryAdult
SexFemale
Racecaucasian
Subtype Featuresbasal_A TNBC

Disease Information

DiseaseBreast ductal carcinoma
LineageBreast
SubtypeBreast Invasive Ductal Carcinoma
OncoTree CodeIDC

DepMap Information

Source TypeATCC
Source IDACH-000374_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg248Gln (c.743G>A)UnspecifiedSomatic mutation acquired during proliferationPubMed=20575032

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D10S1248
13
D12S391
21
D13S317
12
D16S539
11,13
D18S51
14
D19S433
13
D1S1656
13
D21S11
30.2
D22S1045
15,16
D2S1338
20,23
D2S441
10,15
D3S1358
16
D5S818
11
D7S820
12
D8S1179
13
FGA
21
Penta D
8
Penta E
10
TH01
9.3
TPOX
12
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.

Lakhani S.R.

Breast Cancer Res. Treat. 167:289-301(2018).

Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.

Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.

J. Proteome Res. 16:1391-1400(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

The proteomic landscape of triple-negative breast cancer.";

Irie H.Y., Lee S.-I., Blau C.A., Villen J.

Cell Rep. 11:630-644(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.

Bassani-Sternberg M., Pletscher-Frankild S., Jensen L.J., Mann M.

Mol. Cell. Proteomics 14:658-673(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Modeling precision treatment of breast cancer.";

Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.

Genome Biol. 14:R110.1-R110.14(2013).

Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.

Breast Cancer Res. Treat. 142:237-255(2013).

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

McCormick F., Gray J.W.

Cancer Cell 24:450-465(2013).

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

Molecular characterisation of cell line models for triple-negative breast cancers.

Reis-Filho J.S., Tutt A.

BMC Genomics 13:619.1-619.14(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Proteomic portrait of human breast cancer progression identifies novel prognostic markers.

Geiger T., Madden S.F., Gallagher W.M., Cox J., Mann M.

Cancer Res. 72:2428-2439(2012).

Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer.

Chavez K.J., Garimella S.V., Lipkowitz S.

Breast Dis. 32:35-48(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

The genomic landscapes of human breast and colorectal cancers.";

Vogelstein B.

Science 318:1108-1113(2007).

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.

Cancer Cell 10:515-527(2006).

The consensus coding sequences of human breast and colorectal cancers.

Vogelstein B., Kinzler K.W., Velculescu V.E.

Science 314:268-274(2006).

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

Comparison of features of human breast cancer cell lines and their corresponding tumors.

Gazdar A.F.

Clin. Cancer Res. 4:2931-2938(1998).

Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer.

Tomlinson G.E., Tonk V., Ashfaq R., Leitch A.M., Minna J.D., Shay J.W.

Int. J. Cancer 78:766-774(1998).

STR profiling of human cell lines: challenges and possible solutions to the growing problem.

Hart R.P., Furtado M.R.

J. Forensic Res. 2 Suppl. 2:5-5(2011).