HCC1500Homo sapiens (Human)Cancer cell line

Also known as: Hamon Cancer Center 1500, HCC-1500

🤖 AI SummaryBased on 12 publications

Quick Overview

Human breast cancer cell line with known genetic and molecular characteristics.

Detailed Summary

HCC1500 is a human breast cancer cell line derived from a patient with breast cancer. It is widely used in cancer research to study the molecular mechanisms of breast cancer, particularly in the context of genetic mutations and their impact on tumor behavior. This cell line has been characterized in multiple studies, including its response to various therapeutic agents and its molecular profile. Research on HCC1500 has contributed to understanding the heterogeneity of breast cancer and the development of targeted therapies. The cell line is also used to investigate the role of specific genes and pathways in cancer progression and drug resistance.

Research Applications

Cancer geneticsDrug sensitivity profilingMolecular mechanisms of cancerTargeted therapy development

Key Characteristics

Genetic mutations in key oncogenesResponse to various therapeutic agentsMolecular heterogeneity of breast cancer
Generated on 6/16/2025

Basic Information

Database IDCVCL_1254
SpeciesHomo sapiens (Human)
Tissue SourceBreast[UBERON:UBERON_0000310]

Donor Information

Age32
Age CategoryAdult
SexFemale
Raceblack_or_african_american
Subtype Featuresluminal ER, PR+

Disease Information

DiseaseBreast ductal carcinoma
LineageBreast
SubtypeBreast Ductal Carcinoma In Situ
OncoTree CodeDCIS

DepMap Information

Source TypeATCC
Source IDACH-000349_source

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
10
D16S539
9,10
D18S51
13
D19S433
13
D21S11
27,30
D2S1338
18,23
D3S1358
15
D5S818
11,13
D7S820
11
D8S1179
13,14
FGA
23
Penta D
2.2,5
Penta E
7
TH01
9
TPOX
8
vWA
13,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.

Mitra R., Nonn L., Kimbro K.S., Kittles R.A.

Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.

Breast Cancer Res. Treat. 142:237-255(2013).

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

McCormick F., Gray J.W.

Cancer Cell 24:450-465(2013).

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.

Petersen O.W., Gray J.W., Bissell M.J.

Mol. Oncol. 1:84-96(2007).

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.

Cancer Cell 10:515-527(2006).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

Comparison of features of human breast cancer cell lines and their corresponding tumors.

Gazdar A.F.

Clin. Cancer Res. 4:2931-2938(1998).

Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer.

Tomlinson G.E., Tonk V., Ashfaq R., Leitch A.M., Minna J.D., Shay J.W.

Int. J. Cancer 78:766-774(1998).