HCC1806Homo sapiens (Human)Cancer cell line

Also known as: Hamon Cancer Center 1806, HCC-1806, Hcc1806

🤖 AI SummaryBased on 13 publications

Quick Overview

Human breast cancer cell line used in research for triple-negative breast cancer.

Detailed Summary

HCC1806 is a human breast cancer cell line derived from a pleural effusion, commonly used in research for triple-negative breast cancer. It is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and HER2 expression, making it a model for basal-like breast cancer. The cell line is utilized in studies involving gene expression, epigenetic modifications, and drug sensitivity profiling. Research has shown that HCC1806 exhibits specific molecular features associated with aggressive breast cancer subtypes, including high expression of basal markers like EGFR and cytokeratin 5/6. It is also used to investigate the role of genetic and epigenetic factors in cancer progression and therapeutic resistance.

Research Applications

Triple-negative breast cancer researchGene expression profilingEpigenetic modification studiesDrug sensitivity screeningMolecular subtype characterization

Key Characteristics

ER negativePR negativeHER2 negativeBasal-like markers (EGFR, CK5/6)High proliferation rateGenomic instability
Generated on 6/16/2025

Basic Information

Database IDCVCL_1258
SpeciesHomo sapiens (Human)
Tissue SourceBreast[UBERON:UBERON_0000310]

Donor Information

Age60
Age CategoryAdult
SexFemale
Raceblack_or_african_american
Subtype Featuresbasal_A TNBC

Disease Information

DiseaseBreast squamous cell carcinoma, acantholytic variant
LineageBreast
SubtypeBreast Ductal Carcinoma In Situ
OncoTree CodeDCIS

DepMap Information

Source TypeATCC
Source IDACH-000624_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Thr256Lysfs*90 (c.766_767insAA)Heterozygous-from parent cell line HCC1806
MutationUnexplicitFHITEx4delHomozygous-from parent cell line HCC1806

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D12S391
19,21
D13S317
11
D16S539
10
D18S51
16
D19S433
14
D21S11
29
D2S1338
17
D3S1358
16
D5S818
13
D6S1043
12
D7S820
10,12
D8S1179
14,15
FGA
25
Penta D
15
Penta E
12
TH01
8
TPOX
8,9
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Epigenetic and transcriptional profiling of triple negative breast cancer.

Perreault A.A., Sprunger D.M., Venters B.J.

Sci. Data 6:190033-190033(2019).

Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.

Mitra R., Nonn L., Kimbro K.S., Kittles R.A.

Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

The proteomic landscape of triple-negative breast cancer.";

Irie H.Y., Lee S.-I., Blau C.A., Villen J.

Cell Rep. 11:630-644(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Modeling precision treatment of breast cancer.";

Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.

Genome Biol. 14:R110.1-R110.14(2013).

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer.

Chavez K.J., Garimella S.V., Lipkowitz S.

Breast Dis. 32:35-48(2010).

The characterization of cell line CRL-2335 as a basal-like breast carcinoma model.

Neves L.A.H., Ingram L.M., Davis M.B.

Breast Cancer (Auckl.) 5:67-72(2011).

Lung cancer cell lines as tools for biomedical discovery and research.

Gazdar A.F., Girard L., Lockwood W.W., Lam W.L., Minna J.D.

J. Natl. Cancer Inst. 102:1310-1321(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.

Yamamoto S., Oka M., Hirano T., Sasaki K.

BMC Cancer 10:15.1-15.10(2010).

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.

Birnbaum D., Chaffanet M.

Genes Chromosomes Cancer 35:204-218(2002).

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

Comparison of features of human breast cancer cell lines and their corresponding tumors.

Gazdar A.F.

Clin. Cancer Res. 4:2931-2938(1998).

Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer.

Tomlinson G.E., Tonk V., Ashfaq R., Leitch A.M., Minna J.D., Shay J.W.

Int. J. Cancer 78:766-774(1998).

Analysis of the FHIT gene and FRA3B region in sporadic breast cancer, preneoplastic lesions, and familial breast cancer probands.

Gazdar A.F.

Cancer Res. 57:3664-3668(1997).

Resistance patterns in drug-adapted cancer cell lines reflect complex evolution in clinical tumors.

Michaelis M.

bioRxiv 2024:01.20.576412-01.20.576412(2024).