HCC38Homo sapiens (Human)Cancer cell line

Also known as: Hamon Cancer Center 38, HCC0038, HCC 38, HCC-38, Hcc38

🤖 AI SummaryBased on 11 publications

Quick Overview

Human breast cancer cell line with known genetic and molecular characteristics.

Detailed Summary

HCC38 is a human breast cancer cell line derived from a patient with triple-negative breast cancer. It is widely used in cancer research to study the molecular mechanisms of tumor progression and drug resistance. This cell line exhibits specific genetic alterations, including mutations in the TP53 gene, which is commonly associated with aggressive cancer phenotypes. HCC38 is also characterized by its expression of certain biomarkers that are relevant to breast cancer research, such as the absence of estrogen receptor (ER) and progesterone receptor (PR) expression, which is typical of triple-negative breast cancer. The cell line has been utilized in studies involving gene expression profiling, drug sensitivity testing, and the investigation of cancer cell metabolism. Additionally, HCC38 has been part of large-scale genomic and proteomic studies to identify potential therapeutic targets and to understand the heterogeneity of breast cancer.

Research Applications

Cancer biology researchDrug sensitivity testingGene expression profilingProteomic analysisMetabolic studiesTherapeutic target identification

Key Characteristics

Triple-negative breast cancer phenotypeTP53 mutationAbsence of ER and PR expressionGenomic instabilityHigh proliferation rate
Generated on 6/16/2025

Basic Information

Database IDCVCL_1267
SpeciesHomo sapiens (Human)
Tissue SourceBreast[UBERON:UBERON_0000310]

Donor Information

Age50
Age CategoryAdult
SexFemale
Racecaucasian
Subtype Featuresbasal_A TNBC

Disease Information

DiseaseBreast ductal carcinoma
LineageBreast
SubtypeBreast Invasive Ductal Carcinoma
OncoTree CodeIDC

DepMap Information

Source TypeATCC
Source IDACH-000276_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg273Leu (c.818G>T)HomozygousSomatic mutation acquired during proliferationPubMed=31541927, PubMed=23613873, PubMed=15735012

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D10S1248
13
D12S391
18,18.3
D13S317
12,14
D16S539
10,14
D18S51
15
D19S433
13,15
D1S1656
15,17.3
D21S11
27,28
D22S1045
15
D2S1338
17,19
D2S441
14
D3S1358
18
D5S818
9
D7S820
10
D8S1179
8,10
FGA
24
Penta D
9
Penta E
5,11
TH01
9.3
TPOX
9,12
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.

Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.

J. Proteome Res. 16:1391-1400(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

The proteomic landscape of triple-negative breast cancer.";

Irie H.Y., Lee S.-I., Blau C.A., Villen J.

Cell Rep. 11:630-644(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Modeling precision treatment of breast cancer.";

Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.

Genome Biol. 14:R110.1-R110.14(2013).

Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.

Breast Cancer Res. Treat. 142:237-255(2013).

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

McCormick F., Gray J.W.

Cancer Cell 24:450-465(2013).

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

Molecular characterisation of cell line models for triple-negative breast cancers.

Reis-Filho J.S., Tutt A.

BMC Genomics 13:619.1-619.14(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer.

Chavez K.J., Garimella S.V., Lipkowitz S.

Breast Dis. 32:35-48(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.

Yamamoto S., Oka M., Hirano T., Sasaki K.

BMC Cancer 10:15.1-15.10(2010).

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

The genomic landscapes of human breast and colorectal cancers.";

Vogelstein B.

Science 318:1108-1113(2007).

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.

Cancer Cell 10:515-527(2006).

The consensus coding sequences of human breast and colorectal cancers.

Vogelstein B., Kinzler K.W., Velculescu V.E.

Science 314:268-274(2006).

High-resolution analysis of DNA copy number using oligonucleotide microarrays.

Weber B., Shapero M.H., Wooster R.

Genome Res. 14:287-295(2004).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

Comparison of features of human breast cancer cell lines and their corresponding tumors.

Gazdar A.F.

Clin. Cancer Res. 4:2931-2938(1998).

Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer.

Tomlinson G.E., Tonk V., Ashfaq R., Leitch A.M., Minna J.D., Shay J.W.

Int. J. Cancer 78:766-774(1998).

STR profiling of human cell lines: challenges and possible solutions to the growing problem.

Hart R.P., Furtado M.R.

J. Forensic Res. 2 Suppl. 2:5-5(2011).

Resistance patterns in drug-adapted cancer cell lines reflect complex evolution in clinical tumors.

Michaelis M.

bioRxiv 2024:01.20.576412-01.20.576412(2024).