HOP-92Homo sapiens (Human)Cancer cell line

Also known as: Hopkins-92, Hop92, HOP92, HOP.92, HOP 92

🤖 AI SummaryBased on 14 publications

Quick Overview

Human cancer cell line with potential for cancer research.

Detailed Summary

HOP-92 is a human cancer cell line derived from an unspecified tissue, with no specific disease or cell type information provided. It is part of the NCI-60 panel, which is widely used in cancer research for drug screening and molecular profiling. The cell line's genetic and molecular characteristics are not detailed in the available data, but it is included in various studies focusing on cancer cell line diversity and metabolic profiling. Research on HOP-92 may involve investigating its role in drug resistance, gene expression, and metabolic pathways, as seen in similar cell lines. However, specific applications or characteristics of HOP-92 are not explicitly mentioned in the provided data.

Research Applications

Drug screeningMolecular profilingCancer research

Key Characteristics

Part of NCI-60 panelUsed in cancer studies
Generated on 6/16/2025

Basic Information

Database IDCVCL_1286
SpeciesHomo sapiens (Human)
Tissue SourceLung[UBERON:UBERON_0002048]

Donor Information

Age62
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseLung non-small cell carcinoma
LineageLung
SubtypeNon-Small Cell Lung Cancer
OncoTree CodeNSCLC

DepMap Information

Source TypeAcademic lab
Source IDACH-000825_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg175Leu (c.524G>T)Unspecified-Unknown

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
12
D16S539
12
D18S51
12,18
D19S433
13
D21S11
30
D2S1338
19,23
D3S1358
18
D5S818
12
D7S820
8,10
D8S1179
9,14
FGA
19,21
Penta D
10
Penta E
12
TH01
9,9.3
TPOX
8,11
vWA
15
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.

Heymach J.V.

Cancer Discov. 2:798-811(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.

Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.

Cancer Biol. Ther. 7:699-708(2008).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).