HSC-2Homo sapiens (Human)Cancer cell line

Also known as: HSC2

🤖 AI SummaryBased on 15 publications

Quick Overview

Human oral squamous cell carcinoma cell line for cancer research

Detailed Summary

HSC-2 is a human oral squamous cell carcinoma cell line derived from the oral floor. It is widely used in research to study the molecular mechanisms of oral cancer, including E-cadherin expression, genetic alterations, and tumor suppressor gene mutations. The cell line has been characterized for its role in cancer progression and has been utilized in studies related to cell adhesion, invasion, and metastasis. HSC-2 is also involved in research on the impact of genetic mutations on cancer development and therapeutic responses.

Research Applications

Cancer researchMolecular mechanisms of oral cancerGenetic alterations in cancerTumor suppressor gene mutationsCell adhesion and invasion studies

Key Characteristics

Expresses E-cadherinHomozygous deletions in tumor suppressor genesUsed in studies of cancer metastasis
Generated on 6/16/2025

Basic Information

Database IDCVCL_1287
SpeciesHomo sapiens (Human)
Tissue SourceCervical lymph node[UBERON:UBERON_0002429]

Donor Information

Age69
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the oral cavity
LineageHead and Neck
SubtypeOral Cavity Squamous Cell Carcinoma
OncoTree CodeOCSC

DepMap Information

Source TypeHSRRB
Source IDACH-000472_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53c.672+1G>AHomozygousSplice donor mutationUnknown, Unknown, PubMed=1311061
MutationSimplePIK3CAp.His1047Arg (c.3140A>G)Unspecified-PubMed=25926053, PubMed=20570890

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12,13
D10S1248
13
D12S391
18
D13S317
11,12
D16S539
12
D18S51
19
D19S433
14
D1S1656
15,17,18
D21S11
31.2
D22S1045
15
D2S1338
19
D2S441
10
D3S1358
15,17
D5S818
10,12
D7S820
9,12
D8S1179
10,14
DYS391
10
FGA
19,21
Penta D
9
Penta E
12,15
TH01
6,7
TPOX
8
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway.

McDermott U., Garnett M.J., Cheong S.-C.

eLife 9:e57761.1-e57761.34(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Alteration of cancer stem cell-like phenotype by histone deacetylase inhibitors in squamous cell carcinoma of the head and neck.

Takahashi K., Masuyama K.

Cancer Sci. 104:1468-1475(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

The galanin signaling cascade is a candidate pathway regulating oncogenesis in human squamous cell carcinoma.

Sasaki K., Hanazawa T., Okamoto Y., Hata A.

Genes Chromosomes Cancer 48:132-142(2009).

Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas.

Murugan A.K., Hong N.T., Fukui Y., Munirajan A.K., Tsuchida N.

Int. J. Oncol. 32:101-111(2008).

PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation.

Kozaki K.-i., Amagasa T., Inazawa J.

Oncogene 26:7921-7932(2007).

Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array.

Hamakawa H.

Oncogene 26:5300-5308(2007).

PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma.

Omura K., Inazawa J.

Cancer Sci. 97:1351-1358(2006).

Detection of human papillomavirus-16 and HPV-18 DNA in normal, dysplastic, and malignant oral epithelium.

Sugiyama M., Bhawal U.K., Dohmen T., Ono S., Miyauchi M., Ishikawa T.

Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 95:594-600(2003).

Regulation of cell motility via high and low affinity autocrine motility factor (AMF) receptor in human oral squamous carcinoma cells.

Niinaka Y., Haga A., Negishi A., Yoshimasu H., Raz A., Amagasa T.

Oral Oncol. 38:49-55(2002).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Expression of E-cadherin in oral cancer cell lines and its relationship to invasiveness in SCID mice in vivo.

Hoteiya T., Hayashi E., Satomura K., Kamata N., Nagayama M.

J. Oral Pathol. Med. 28:107-111(1999).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas.

Momose F., Araida T., Negishi A., Ichijo H., Shioda S., Sasaki S.

J. Oral Pathol. Med. 18:391-395(1989).

Growth of the malignant and nonmalignant human squamous cells in a protein-free defined medium.

Rikimaru K., Toda H., Tachikawa N., Kamata N., Enomoto S.

In Vitro Cell. Dev. Biol. 26:849-856(1990).

Most human squamous cell carcinomas in the oral cavity contain mutated p53 tumor-suppressor genes.

Sakai E., Tsuchida N.

Oncogene 7:927-933(1992).