HSC-3Homo sapiens (Human)Cancer cell line
Also known as: HSC3, HSC 3
Quick Overview
Human oral squamous cell carcinoma cell line with known metastatic potential.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1288 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Cervical lymph node[UBERON:UBERON_0002429] |
Donor Information
Age | 64 |
---|---|
Age Category | Adult |
Sex | Male |
Disease Information
Disease | Squamous cell carcinoma of the oral tongue |
---|---|
Lineage | Head and Neck |
Subtype | Oral Cavity Squamous Cell Carcinoma |
OncoTree Code | OCSC |
DepMap Information
Source Type | HSRRB |
---|---|
Source ID | ACH-000778_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Lys305fs (c.912_913insTAAG) | Unspecified | - | from parent cell line HSC-3 |
MutationSimple | TERT | c.1-124C>T (c.228C>T) (C228T) | Unspecified | In promoter | from parent cell line Hep-G2 |
MutationSimple | PIK3CA | p.Glu545Gly (c.1634A>G) | Unspecified | - | from parent cell line HSC-3 |
MutationSimple | CDKN2A | p.Glu120Ter (c.358G>T) | Unspecified | - | from parent cell line KYSE-30 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
JunB promotes cell invasion, migration and distant metastasis of head and neck squamous cell carcinoma.
Ito Y., Myers J.N., Oridate N.
J. Exp. Clin. Cancer Res. 35:6.1-6.12(2016).
Biological characterization and analysis of metastasis-related genes in cell lines derived from the primary lesion and lymph node metastasis of a squamous cell carcinoma arising in the mandibular gingiva.
Ikari T., Onimaru M., Akimoto N., Jogo R., Mori Y.
Int. J. Oncol. 44:1614-1624(2014).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Examination of the optimal condition on the in vitro sensitivity to telomelysin in head and neck cancer cell lines.
Fujita K., Takahashi H., Matsuda H.
Auris Nasus Larynx 38:589-599(2011).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
The galanin signaling cascade is a candidate pathway regulating oncogenesis in human squamous cell carcinoma.
Sasaki K., Hanazawa T., Okamoto Y., Hata A.
Genes Chromosomes Cancer 48:132-142(2009).
Characterization of gene expression profiles of 3 different human oral squamous cell carcinoma cell lines with different invasion and metastatic capacities.
Erdem N.F., Carlson E.R., Gerard D.A.
J. Oral Maxillofac. Surg. 66:918-927(2008).
Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas.
Murugan A.K., Hong N.T., Fukui Y., Munirajan A.K., Tsuchida N.
Int. J. Oncol. 32:101-111(2008).
Characterization of 3 oral squamous cell carcinoma cell lines with different invasion and/or metastatic potentials.
Erdem N.F., Carlson E.R., Gerard D.A., Ichiki A.T.
J. Oral Maxillofac. Surg. 65:1725-1733(2007).
PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation.
Kozaki K.-i., Amagasa T., Inazawa J.
Oncogene 26:7921-7932(2007).
Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array.
Hamakawa H.
Oncogene 26:5300-5308(2007).
PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma.
Omura K., Inazawa J.
Cancer Sci. 97:1351-1358(2006).
Association of expression of receptor for advanced glycation end products and invasive activity of oral squamous cell carcinoma.
Kuniyasu H., Kato Y.
Oncology 69:246-255(2005).
Detection of human papillomavirus-16 and HPV-18 DNA in normal, dysplastic, and malignant oral epithelium.
Sugiyama M., Bhawal U.K., Dohmen T., Ono S., Miyauchi M., Ishikawa T.
Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 95:594-600(2003).
Regulation of cell motility via high and low affinity autocrine motility factor (AMF) receptor in human oral squamous carcinoma cells.
Niinaka Y., Haga A., Negishi A., Yoshimasu H., Raz A., Amagasa T.
Oral Oncol. 38:49-55(2002).
Short tandem repeat profiling provides an international reference standard for human cell lines.
Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).
A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck.
Song Y.-S., Appella E., Whiteside T.L., DeLeo A.B.
Clin. Cancer Res. 6:979-986(2000).
Expression of E-cadherin in oral cancer cell lines and its relationship to invasiveness in SCID mice in vivo.
Hoteiya T., Hayashi E., Satomura K., Kamata N., Nagayama M.
J. Oral Pathol. Med. 28:107-111(1999).
Isolation of a highly metastatic cell line to lymph node in human oral squamous cell carcinoma by orthotopic implantation in nude mice.
Matsui T., Ota T., Ueda Y., Tanino M., Odashima S.
Oral Oncol. 34:253-256(1998).
Screening the p53 status of human cell lines using a yeast functional assay.
Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
Mol. Carcinog. 19:243-253(1997).
HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.
Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.
Cell. Immunol. 175:101-110(1997).
Expression of the MAGE gene family in human head-and-neck squamous-cell carcinomas.
Itoh K., Ishikawa T.
Int. J. Cancer 64:304-308(1995).
Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas.
Momose F., Araida T., Negishi A., Ichijo H., Shioda S., Sasaki S.
J. Oral Pathol. Med. 18:391-395(1989).
Growth of the malignant and nonmalignant human squamous cells in a protein-free defined medium.
Rikimaru K., Toda H., Tachikawa N., Kamata N., Enomoto S.
In Vitro Cell. Dev. Biol. 26:849-856(1990).
Most human squamous cell carcinomas in the oral cavity contain mutated p53 tumor-suppressor genes.
Sakai E., Tsuchida N.
Oncogene 7:927-933(1992).