HSC-3Homo sapiens (Human)Cancer cell line

Also known as: HSC3, HSC 3

🤖 AI SummaryBased on 16 publications

Quick Overview

Human oral squamous cell carcinoma cell line with known metastatic potential.

Detailed Summary

HSC-3 is a human oral squamous cell carcinoma cell line derived from a primary tumor. It is widely used in research to study the mechanisms of cancer invasion and metastasis. The cell line exhibits characteristics associated with aggressive tumor behavior, including high migratory and invasive potential. Research on HSC-3 has contributed to understanding the role of specific genes and signaling pathways in cancer progression, such as the involvement of RAGE in invasion and the role of PIK3CA mutations in tumor development. HSC-3 is also utilized in studies examining the effects of genetic alterations on drug sensitivity and therapeutic responses.

Research Applications

Cancer metastasisGene expression analysisDrug sensitivity testingSignal transduction pathwaysTumor invasion mechanisms

Key Characteristics

High metastatic potentialExpresses RAGE receptorPIK3CA mutations presentUsed in drug response studies
Generated on 6/16/2025

Basic Information

Database IDCVCL_1288
SpeciesHomo sapiens (Human)
Tissue SourceCervical lymph node[UBERON:UBERON_0002429]

Donor Information

Age64
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the oral tongue
LineageHead and Neck
SubtypeOral Cavity Squamous Cell Carcinoma
OncoTree CodeOCSC

DepMap Information

Source TypeHSRRB
Source IDACH-000778_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Lys305fs (c.912_913insTAAG)Unspecified-from parent cell line HSC-3
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimplePIK3CAp.Glu545Gly (c.1634A>G)Unspecified-from parent cell line HSC-3
MutationSimpleCDKN2Ap.Glu120Ter (c.358G>T)Unspecified-from parent cell line KYSE-30

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
11
D10S1248
14,15
D12S391
18
D13S317
12
D16S539
9
D18S51
15
D19S433
13,14.2
D1S1656
13,16
D21S11
30,31.2
D22S1045
15
D2S1338
19,23
D2S441
11
D3S1358
17
D5S818
11,13
D7S820
13
D8S1179
12
DYS391
10
FGA
22,26
Penta D
10
Penta E
11,15
TH01
6,9.3
TPOX
8
vWA
14,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

JunB promotes cell invasion, migration and distant metastasis of head and neck squamous cell carcinoma.

Ito Y., Myers J.N., Oridate N.

J. Exp. Clin. Cancer Res. 35:6.1-6.12(2016).

Biological characterization and analysis of metastasis-related genes in cell lines derived from the primary lesion and lymph node metastasis of a squamous cell carcinoma arising in the mandibular gingiva.

Ikari T., Onimaru M., Akimoto N., Jogo R., Mori Y.

Int. J. Oncol. 44:1614-1624(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Examination of the optimal condition on the in vitro sensitivity to telomelysin in head and neck cancer cell lines.

Fujita K., Takahashi H., Matsuda H.

Auris Nasus Larynx 38:589-599(2011).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

The galanin signaling cascade is a candidate pathway regulating oncogenesis in human squamous cell carcinoma.

Sasaki K., Hanazawa T., Okamoto Y., Hata A.

Genes Chromosomes Cancer 48:132-142(2009).

Characterization of gene expression profiles of 3 different human oral squamous cell carcinoma cell lines with different invasion and metastatic capacities.

Erdem N.F., Carlson E.R., Gerard D.A.

J. Oral Maxillofac. Surg. 66:918-927(2008).

Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas.

Murugan A.K., Hong N.T., Fukui Y., Munirajan A.K., Tsuchida N.

Int. J. Oncol. 32:101-111(2008).

Characterization of 3 oral squamous cell carcinoma cell lines with different invasion and/or metastatic potentials.

Erdem N.F., Carlson E.R., Gerard D.A., Ichiki A.T.

J. Oral Maxillofac. Surg. 65:1725-1733(2007).

PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation.

Kozaki K.-i., Amagasa T., Inazawa J.

Oncogene 26:7921-7932(2007).

Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array.

Hamakawa H.

Oncogene 26:5300-5308(2007).

PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma.

Omura K., Inazawa J.

Cancer Sci. 97:1351-1358(2006).

Association of expression of receptor for advanced glycation end products and invasive activity of oral squamous cell carcinoma.

Kuniyasu H., Kato Y.

Oncology 69:246-255(2005).

Detection of human papillomavirus-16 and HPV-18 DNA in normal, dysplastic, and malignant oral epithelium.

Sugiyama M., Bhawal U.K., Dohmen T., Ono S., Miyauchi M., Ishikawa T.

Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 95:594-600(2003).

Regulation of cell motility via high and low affinity autocrine motility factor (AMF) receptor in human oral squamous carcinoma cells.

Niinaka Y., Haga A., Negishi A., Yoshimasu H., Raz A., Amagasa T.

Oral Oncol. 38:49-55(2002).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck.

Song Y.-S., Appella E., Whiteside T.L., DeLeo A.B.

Clin. Cancer Res. 6:979-986(2000).

Expression of E-cadherin in oral cancer cell lines and its relationship to invasiveness in SCID mice in vivo.

Hoteiya T., Hayashi E., Satomura K., Kamata N., Nagayama M.

J. Oral Pathol. Med. 28:107-111(1999).

Isolation of a highly metastatic cell line to lymph node in human oral squamous cell carcinoma by orthotopic implantation in nude mice.

Matsui T., Ota T., Ueda Y., Tanino M., Odashima S.

Oral Oncol. 34:253-256(1998).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

Expression of the MAGE gene family in human head-and-neck squamous-cell carcinomas.

Itoh K., Ishikawa T.

Int. J. Cancer 64:304-308(1995).

Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas.

Momose F., Araida T., Negishi A., Ichijo H., Shioda S., Sasaki S.

J. Oral Pathol. Med. 18:391-395(1989).

Growth of the malignant and nonmalignant human squamous cells in a protein-free defined medium.

Rikimaru K., Toda H., Tachikawa N., Kamata N., Enomoto S.

In Vitro Cell. Dev. Biol. 26:849-856(1990).

Most human squamous cell carcinomas in the oral cavity contain mutated p53 tumor-suppressor genes.

Sakai E., Tsuchida N.

Oncogene 7:927-933(1992).