HSC-4Homo sapiens (Human)Cancer cell line

Also known as: HSC4

🤖 AI SummaryBased on 14 publications

Quick Overview

Human oral squamous cell carcinoma cell line with E-cadherin expression and potential for cancer research.

Detailed Summary

HSC-4 is a human oral squamous cell carcinoma cell line derived from tongue cancer. It expresses E-cadherin, a cell adhesion molecule, and has been studied for its role in tumor invasiveness and metastasis. Research indicates that HSC-4 exhibits characteristics of cuboidal morphology and forms cobblestone colonies, which are typical of epithelial cells. The cell line has been used in studies examining the relationship between E-cadherin expression and tumor progression, as well as in investigations of genetic alterations such as homozygous deletions and mutations in genes like FAT and PIK3CA. HSC-4 is also part of larger studies on cancer genomics, including the Cancer Cell Line Encyclopedia (CCLE) and other genomic profiling efforts, contributing to the understanding of molecular mechanisms in oral cancer.

Research Applications

Cancer researchGenomic profilingTumor invasiveness and metastasis studiesE-cadherin expression analysisHomozygous deletion and mutation studies

Key Characteristics

Expresses E-cadherinCuboidal morphologyForms cobblestone coloniesUsed in studies of oral cancer genomics
Generated on 6/16/2025

Basic Information

Database IDCVCL_1289
SpeciesHomo sapiens (Human)
Tissue SourceCervical lymph node[UBERON:UBERON_0002429]

Donor Information

Age64
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the oral tongue
LineageHead and Neck
SubtypeOral Cavity Squamous Cell Carcinoma
OncoTree CodeOCSC

DepMap Information

Source TypeHSRRB
Source IDACH-000546_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg248Gln (c.743G>A)UnspecifiedSomatic mutation acquired during proliferationPubMed=20575032
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimplePIK3CAp.Glu545Lys (c.1633G>A)Heterozygous-from parent cell line MCF-7
MutationSimpleCDKN2Ap.Arg80Ter (c.238C>T) (p.Pro94Leu, c.281C>T)Homozygous-from parent cell line HL-60

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
9
D10S1248
12,13
D12S391
18,19
D13S317
8,13
D16S539
12
D18S51
15,20
D19S433
13,14
D1S1656
15,16
D21S11
29,30
D22S1045
17
D2S1338
24
D2S441
10
D3S1358
15,16
D5S818
8,11
D7S820
9,10
D8S1179
13
FGA
23
Penta D
12
Penta E
17,19
TH01
6,9
TPOX
11
vWA
16,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Biological and genetic characterization of a newly established human external auditory canal carcinoma cell line, SCEACono2.

Manako T., Kuga R., Hongo T., Kogo R., Onishi H., Nakagawa T.

Sci. Rep. 13:19636-19636(2023).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway.

McDermott U., Garnett M.J., Cheong S.-C.

eLife 9:e57761.1-e57761.34(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas.

Murugan A.K., Hong N.T., Fukui Y., Munirajan A.K., Tsuchida N.

Int. J. Oncol. 32:101-111(2008).

PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation.

Kozaki K.-i., Amagasa T., Inazawa J.

Oncogene 26:7921-7932(2007).

Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array.

Hamakawa H.

Oncogene 26:5300-5308(2007).

PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma.

Omura K., Inazawa J.

Cancer Sci. 97:1351-1358(2006).

Detection of human papillomavirus-16 and HPV-18 DNA in normal, dysplastic, and malignant oral epithelium.

Sugiyama M., Bhawal U.K., Dohmen T., Ono S., Miyauchi M., Ishikawa T.

Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 95:594-600(2003).

Regulation of cell motility via high and low affinity autocrine motility factor (AMF) receptor in human oral squamous carcinoma cells.

Niinaka Y., Haga A., Negishi A., Yoshimasu H., Raz A., Amagasa T.

Oral Oncol. 38:49-55(2002).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck.

Song Y.-S., Appella E., Whiteside T.L., DeLeo A.B.

Clin. Cancer Res. 6:979-986(2000).

Expression of E-cadherin in oral cancer cell lines and its relationship to invasiveness in SCID mice in vivo.

Hoteiya T., Hayashi E., Satomura K., Kamata N., Nagayama M.

J. Oral Pathol. Med. 28:107-111(1999).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Expression of bone morphogenetic proteins of human neoplastic epithelial cells.

Hatakeyama S., Gao Y.-H., Ohara-Nemoto Y., Kataoka H., Satoh M.

Biochem. Mol. Biol. Int. 42:497-505(1997).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

Expression of the MAGE gene family in human head-and-neck squamous-cell carcinomas.

Itoh K., Ishikawa T.

Int. J. Cancer 64:304-308(1995).

Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas.

Momose F., Araida T., Negishi A., Ichijo H., Shioda S., Sasaki S.

J. Oral Pathol. Med. 18:391-395(1989).

Growth of the malignant and nonmalignant human squamous cells in a protein-free defined medium.

Rikimaru K., Toda H., Tachikawa N., Kamata N., Enomoto S.

In Vitro Cell. Dev. Biol. 26:849-856(1990).

Most human squamous cell carcinomas in the oral cavity contain mutated p53 tumor-suppressor genes.

Sakai E., Tsuchida N.

Oncogene 7:927-933(1992).