HT-1197Homo sapiens (Human)Cancer cell line

Also known as: HT 1197.T, HT1197, HT 1197

🤖 AI SummaryBased on 14 publications

Quick Overview

Human bladder cancer cell line with known genetic mutations and drug sensitivity profiles.

Detailed Summary

HT-1197 is a human bladder cancer cell line derived from transitional cell carcinoma. It is characterized by specific genetic mutations, including alterations in the TERT promoter and other key cancer-related genes. The cell line has been used in studies investigating the molecular mechanisms of bladder cancer, including the role of telomerase activation and genomic instability. Research has shown that HT-1197 exhibits high-frequency mutations in the TERT promoter, which are associated with increased telomerase activity and tumor progression. Additionally, the cell line has been utilized in drug sensitivity assays to evaluate potential therapeutic targets and response to various chemotherapeutic agents. These properties make HT-1197 a valuable model for studying bladder cancer biology and developing targeted therapies.

Research Applications

Genomic instability and mutation analysisTelomerase activity and TERT promoter mutationsDrug sensitivity and chemotherapeutic responseMolecular mechanisms of bladder cancer progression

Key Characteristics

High-frequency TERT promoter mutationsGenomic alterations associated with tumor progressionDrug sensitivity profiles for chemotherapeutic agents
Generated on 6/16/2025

Basic Information

Database IDCVCL_1291
SpeciesHomo sapiens (Human)
Tissue SourceUrinary bladder[UBERON:UBERON_0001255]

Donor Information

Age44
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseRecurrent bladder carcinoma
LineageBladder/Urinary Tract
SubtypeBladder Urothelial Carcinoma
OncoTree CodeBLCA

DepMap Information

Source TypeATCC
Source IDACH-000547_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleTP53p.His365Arg (c.1094A>G)Unspecified-PubMed=7787250
MutationSimpleNRASp.Gln61Arg (c.182A>G)Unspecified-PubMed=26214590

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
11,12
D13S317
11,12
D16S539
12,13
D18S51
19
D19S433
14,16
D21S11
31,32.2
D2S1338
20,21
D3S1358
15,18
D5S818
12
D7S820
11,12
D8S1179
9,13
FGA
20,23
Penta D
9,12
Penta E
10,11
TH01
6,9.3
TPOX
11,12
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Systematic review: characteristics and preclinical uses of bladder cancer cell lines.

Zuiverloon T.C.M., de Jong F.C., Costello J.C., Theodorescu D.

Bladder Cancer 4:169-183(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

Tsang S.X., Cai Z.-M., Wu S., Dean M., Costello J.C., Theodorescu D.

Oncogene 36:35-46(2017).

The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.

Chanock S.J., Valencia A., Real F.X.

BMC Genomics 16:403.1-403.16(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Identification of mutations in distinct regions of p85 alpha in urothelial cancer.

Knowles M.A.

PLoS ONE 8:E84411-E84411(2013).

Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine.

Hurst C.D., Platt F.M., Knowles M.A.

Eur. Urol. 65:367-369(2014).

Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome.

Orntoft T.F., Zuiverloon T.C.M., Malats N., Zwarthoff E.C., Real F.X.

Eur. Urol. 65:360-366(2014).

TSC1 involvement in bladder cancer: diverse effects and therapeutic implications.

Kwiatkowski D.J.

J. Pathol. 230:17-27(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro.

Knowles M.A.

Genes Chromosomes Cancer 43:315-328(2005).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Molecular genetic analysis of chromosome 9 candidate tumor-suppressor loci in bladder cancer cell lines.

Coulter J., Kennedy W.J., Skilleter A., Habuchi T., Knowles M.A.

Genes Chromosomes Cancer 34:86-96(2002).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes.

Stadler W.M., Olopade O.I.

Urol. Res. 24:239-244(1996).

p53 mutations in bladder carcinoma cell lines.";

Lippa M., Hatzivassiliou G., Tan J.

Oncol. Res. 6:569-579(1994).

Human urologic cancer cell lines.";

Williams R.D.

Invest. Urol. 17:359-363(1980).

Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines.

Franks L.M.

Cancer Res. 46:3630-3636(1986).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Human bladder carcinoma: characterization of two new tumor cell lines and search for tumor viruses.

Rasheed S., Gardner M.B., Rongey R.W., Nelson-Rees W.A., Arnstein P.

J. Natl. Cancer Inst. 58:881-890(1977).