HuP-T4Homo sapiens (Human)Cancer cell line

Also known as: HUPT4, HuPT4, Hu-P-T4, HUP-T4

🤖 AI SummaryBased on 12 publications

Quick Overview

Human pancreatic carcinoma cell line with high CEA and CA19-9 secretion.

Detailed Summary

HuP-T4 is a human pancreatic carcinoma cell line established from the ascites of a patient with carcinomatous peritonitis. It exhibits a population doubling time of 37.1 hours and secretes significant amounts of CEA and CA19-9 into the culture medium. The cell line shows tumorigenicity in mice, forming well-differentiated papillotubular adenocarcinoma. Immunocytochemical analysis reveals distinct expression patterns of intermediate filaments and other markers, indicating its epithelial origin. HuP-T4 is valuable for studying pancreatic cancer biology and therapeutic responses.

Research Applications

Cancer biologyDrug developmentTumor marker analysis

Key Characteristics

High CEA and CA19-9 secretionTumorigenic in miceWell-differentiated papillotubular adenocarcinoma formationEpithelial origin
Generated on 6/16/2025

Basic Information

Database IDCVCL_1300
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age60
Age CategoryAdult
SexMale
Raceasian

Disease Information

DiseasePancreatic adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeDSMZ
Source IDACH-000213_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Ile255Thr (c.764T>C)Homozygous-Unknown, Unknown
MutationSimpleKRASp.Gly12Val (c.35G>T)HeterozygousAcquiredUnknown, Unknown

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,12
D13S317
8
D16S539
10,11
D18S51
18
D19S433
13
D21S11
29,32.2
D2S1338
18,19
D3S1358
15
D5S818
10,11
D7S820
8,11
D8S1179
11,16
FGA
23,24,25
Penta D
9
Penta E
18,19
TH01
9
TPOX
8
vWA
17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.

Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.

Oncogene 24:1794-1801(2005).

Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

Veltman J.A., van Kessel A.G., Hoglund M.

Cancer Res. 64:3052-3059(2004).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Newly established human pancreatic carcinoma cell lines and their lectin binding properties.

Yamazaki K., Watanabe A., Sasaki H.

Int. J. Pancreatol. 13:31-41(1993).

Distribution of characteristic mutations in native ductal adenocarcinoma of the pancreas and pancreatic cancer cell lines.

Saeger H.-D.

Cell Biol. Res. Ther. 2:1000104.1-1000104.5(2013).