IGROV-1Homo sapiens (Human)Cancer cell line

Also known as: Igrov-1, IGROV 1, IGR-OV1, IGROV1, Igrov1, IGR.OV1, IGROV, OV1/P, OV1/p, OV1-P, IGR-OV1-RU, IGROV-4

🤖 AI SummaryBased on 12 publications

Quick Overview

IGROV-1 is a human ovarian cancer cell line used in cancer research.

Detailed Summary

IGROV-1 is a human ovarian cancer cell line derived from a high-grade serous carcinoma. It is commonly used in research for studying ovarian cancer biology, drug response, and molecular mechanisms. The cell line has been characterized in multiple studies for its genetic and proteomic profiles, and it is part of several large-scale cancer cell line panels. IGROV-1 is utilized in studies involving gene expression, protein analysis, and drug sensitivity testing. It is also used in xenograft models to evaluate tumor growth and therapeutic efficacy in vivo.

Research Applications

Cancer biology researchDrug response studiesGene expression analysisProtein profilingXenograft models

Key Characteristics

High-grade serous carcinoma originUsed in multiple cancer cell line panelsCharacterized for genetic and proteomic profiles
Generated on 6/16/2025

Basic Information

Database IDCVCL_1304
SpeciesHomo sapiens (Human)
Tissue SourceOvary[UBERON:UBERON_0000992]

Donor Information

Age47
Age CategoryAdult
SexFemale

Disease Information

DiseaseOvarian endometrioid adenocarcinoma
LineageOvary/Fallopian Tube
SubtypeEndometrioid Ovarian Cancer
OncoTree CodeEOV

DepMap Information

Source TypeAcademic lab
Source IDACH-000966_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleBRCA1p.Lys654Serfs*47 (c.1961delA)Heterozygous-from parent cell line IGROV-1
MutationSimpleBRCA2p.Lys1108Argfs*11 (c.3323delA) (p.Gln1107fs) (c.3320delA)Unspecified-from parent cell line IGROV-1
MutationSimplePIK3CAp.Arg38Cys (c.112C>T)Heterozygous-from parent cell line IGROV-1
MutationSimplePIK3CAp.Ter1069TrpinsLysAspAsn (c.3207A>G)Heterozygous-from parent cell line IGROV-1
MutationSimplePTENp.Thr319fs*1 (c.955_958delACTT) (p.VL317fs) (V317fs*3)Heterozygous-from parent cell line SK-UT-1
MutationSimpleRB1p.Val654Cysfs*4 (c.1959delA)Homozygous-from parent cell line SK-UT-1
MutationSimpleSMAD4p.Gly231Alafs*10 (c.692delG)Heterozygous-from parent cell line IGROV-1
MutationSimpleSMAD4p.Leu495Pro (c.1484T>C)Heterozygous-from parent cell line IGROV-1
MutationSimpleTP53p.Ser90Leufs*59 (c.267dupC) (c.267_268insC)Heterozygous-from parent cell line IGROV-1
MutationSimpleTP53p.Tyr126Cys (c.377A>G)Unspecified-PubMed=25010205

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12,13,14,15,16
D13S317
8,10
D16S539
10,11,12,13
D18S51
14,15,16
D19S433
13,14
D21S11
26,29.2,30.2
D2S1338
17,25
D3S1358
13,14,15
D5S818
11,12,13
D7S820
9.1,10.1,11.1
D8S1179
13,14,15,16,17
FGA
20,21,26
Penta D
8,10
Penta E
13,17
TH01
7,9.3
TPOX
8,11
vWA
16,17,20,21,22
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Deep transcriptome profiling of ovarian cancer cells using next-generation sequencing approach.

Li L.-S., Liu J., Yu W., Lou X.-Y., Huang B.-D., Lin B.-Y.

Methods Mol. Biol. 1049:139-169(2013).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Identification of ovarian high-grade serous carcinoma cell lines that show estrogen-sensitive growth as xenografts in immunocompromised mice.

Herodek B., Arteagabeitia A.B., Valenti M., Kirkin V.

Sci. Rep. 10:10799-10799(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.

Velculescu V.E., Scharpf R.B.

Cell Rep. 25:2617-2633(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status.

Tyanova S., Montag A., Lastra R.R., Lengyel E., Mann M.

Nat. Commun. 7:12645.1-12645.14(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Characterization of ovarian cancer cell lines as in vivo models for preclinical studies.

Noonan A.M., Annunziata C.M.

Gynecol. Oncol. 142:332-340(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes.

Helleman J.

PLoS ONE 9:E103988-E103988(2014).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Type-specific cell line models for type-specific ovarian cancer research.

Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.

PLoS ONE 8:E72162-E72162(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems.

Delia D., Pierotti M.A., Miyashita T., Reed J.C., Zunino F.

Cancer Res. 56:556-562(1996).

Abrogated energy-dependent uptake of cisplatin in a cisplatin-resistant subline of the human ovarian cancer cell line IGROV-1.

Ma J.-G., Maliepaard M., Kolker H.J., Verweij J., Schellens J.H.M.

Cancer Chemother. Pharmacol. 41:186-192(1998).

Synergistic cytotoxicity of cisplatin and topotecan or SN-38 in a panel of eight solid-tumor cell lines in vitro.

Schellens J.H.M.

Cancer Chemother. Pharmacol. 41:307-316(1998).

Ovarian cancer cisplatin-resistant cell lines: multiple changes including collateral sensitivity to taxol.

Bonetti A., Paolicchi A., Zunino F.

Ann. Oncol. 9:423-430(1998).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Isolation and characterization of an IGROV-1 human ovarian cancer cell line made resistant to Ecteinascidin-743 (ET-743).

Muradore I., Vignati S., Faircloth G.T., Jimeno J.M., D'Incalci M.

Br. J. Cancer 82:1732-1739(2000).

Gene expression patterns in ovarian carcinomas.";

Sikic B.I.

Mol. Biol. Cell 14:4376-4386(2003).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Proteins associated with cisplatin resistance in ovarian cancer cells identified by quantitative proteomic technology and integrated with mRNA expression levels.

Urban N.D., Hood L.E., Lin B.-Y.

Mol. Cell. Proteomics 5:433-443(2006).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Genomic complexity and AKT dependence in serous ovarian cancer.";

Taylor B.S., Sander C., Rosen N., Levine D.A., Solit D.B.

Cancer Discov. 2:56-67(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

Lessey B.A., Jordan V.C., Bradford A.P.

Gynecol. Oncol. 127:241-248(2012).

BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

Mills G.B., Hennessy B.T.

Mol. Oncol. 7:567-579(2013).

Evaluating cell lines as tumour models by comparison of genomic profiles.

Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.

Nat. Commun. 4:2126.1-2126.10(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).