IGROV-1Homo sapiens (Human)Cancer cell line
Also known as: Igrov-1, IGROV 1, IGR-OV1, IGROV1, Igrov1, IGR.OV1, IGROV, OV1/P, OV1/p, OV1-P, IGR-OV1-RU, IGROV-4
Quick Overview
IGROV-1 is a human ovarian cancer cell line used in cancer research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1304 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Ovary[UBERON:UBERON_0000992] |
Donor Information
Age | 47 |
---|---|
Age Category | Adult |
Sex | Female |
Disease Information
Disease | Ovarian endometrioid adenocarcinoma |
---|---|
Lineage | Ovary/Fallopian Tube |
Subtype | Endometrioid Ovarian Cancer |
OncoTree Code | EOV |
DepMap Information
Source Type | Academic lab |
---|---|
Source ID | ACH-000966_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | BRCA1 | p.Lys654Serfs*47 (c.1961delA) | Heterozygous | - | from parent cell line IGROV-1 |
MutationSimple | BRCA2 | p.Lys1108Argfs*11 (c.3323delA) (p.Gln1107fs) (c.3320delA) | Unspecified | - | from parent cell line IGROV-1 |
MutationSimple | PIK3CA | p.Arg38Cys (c.112C>T) | Heterozygous | - | from parent cell line IGROV-1 |
MutationSimple | PIK3CA | p.Ter1069TrpinsLysAspAsn (c.3207A>G) | Heterozygous | - | from parent cell line IGROV-1 |
MutationSimple | PTEN | p.Thr319fs*1 (c.955_958delACTT) (p.VL317fs) (V317fs*3) | Heterozygous | - | from parent cell line SK-UT-1 |
MutationSimple | RB1 | p.Val654Cysfs*4 (c.1959delA) | Homozygous | - | from parent cell line SK-UT-1 |
MutationSimple | SMAD4 | p.Gly231Alafs*10 (c.692delG) | Heterozygous | - | from parent cell line IGROV-1 |
MutationSimple | SMAD4 | p.Leu495Pro (c.1484T>C) | Heterozygous | - | from parent cell line IGROV-1 |
MutationSimple | TP53 | p.Ser90Leufs*59 (c.267dupC) (c.267_268insC) | Heterozygous | - | from parent cell line IGROV-1 |
MutationSimple | TP53 | p.Tyr126Cys (c.377A>G) | Unspecified | - | PubMed=25010205 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Deep transcriptome profiling of ovarian cancer cells using next-generation sequencing approach.
Li L.-S., Liu J., Yu W., Lou X.-Y., Huang B.-D., Lin B.-Y.
Methods Mol. Biol. 1049:139-169(2013).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Identification of ovarian high-grade serous carcinoma cell lines that show estrogen-sensitive growth as xenografts in immunocompromised mice.
Herodek B., Arteagabeitia A.B., Valenti M., Kirkin V.
Sci. Rep. 10:10799-10799(2020).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.
Velculescu V.E., Scharpf R.B.
Cell Rep. 25:2617-2633(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status.
Tyanova S., Montag A., Lastra R.R., Lengyel E., Mann M.
Nat. Commun. 7:12645.1-12645.14(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
Characterization of ovarian cancer cell lines as in vivo models for preclinical studies.
Noonan A.M., Annunziata C.M.
Gynecol. Oncol. 142:332-340(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes.
Helleman J.
PLoS ONE 9:E103988-E103988(2014).
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).
Type-specific cell line models for type-specific ovarian cancer research.
Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.
PLoS ONE 8:E72162-E72162(2013).
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
J. Natl. Cancer Inst. 83:757-766(1991).
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Cancer Res. 48:589-601(1988).
Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems.
Delia D., Pierotti M.A., Miyashita T., Reed J.C., Zunino F.
Cancer Res. 56:556-562(1996).
Abrogated energy-dependent uptake of cisplatin in a cisplatin-resistant subline of the human ovarian cancer cell line IGROV-1.
Ma J.-G., Maliepaard M., Kolker H.J., Verweij J., Schellens J.H.M.
Cancer Chemother. Pharmacol. 41:186-192(1998).
Synergistic cytotoxicity of cisplatin and topotecan or SN-38 in a panel of eight solid-tumor cell lines in vitro.
Schellens J.H.M.
Cancer Chemother. Pharmacol. 41:307-316(1998).
Ovarian cancer cisplatin-resistant cell lines: multiple changes including collateral sensitivity to taxol.
Bonetti A., Paolicchi A., Zunino F.
Ann. Oncol. 9:423-430(1998).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
Isolation and characterization of an IGROV-1 human ovarian cancer cell line made resistant to Ecteinascidin-743 (ET-743).
Muradore I., Vignati S., Faircloth G.T., Jimeno J.M., D'Incalci M.
Br. J. Cancer 82:1732-1739(2000).
Gene expression patterns in ovarian carcinomas.";
Sikic B.I.
Mol. Biol. Cell 14:4376-4386(2003).
HLA class I and II genotype of the NCI-60 cell lines.";
Morse H.C. 3rd, Stroncek D., Marincola F.M.
J. Transl. Med. 3:11.1-11.8(2005).
Proteins associated with cisplatin resistance in ovarian cancer cells identified by quantitative proteomic technology and integrated with mRNA expression levels.
Urban N.D., Hood L.E., Lin B.-Y.
Mol. Cell. Proteomics 5:433-443(2006).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
Genomic complexity and AKT dependence in serous ovarian cancer.";
Taylor B.S., Sander C., Rosen N., Levine D.A., Solit D.B.
Cancer Discov. 2:56-67(2012).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.
Lessey B.A., Jordan V.C., Bradford A.P.
Gynecol. Oncol. 127:241-248(2012).
BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.
Mills G.B., Hennessy B.T.
Mol. Oncol. 7:567-579(2013).
Evaluating cell lines as tumour models by comparison of genomic profiles.
Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.
Nat. Commun. 4:2126.1-2126.10(2013).