Karpas-422Homo sapiens (Human)Cancer cell line

Also known as: K422, KARPAS422, Karpas422, KARPAS 422, Karpas 422, KARPAS-422, Karpass422

🤖 AI SummaryBased on 12 publications

Quick Overview

Human diffuse large B-cell lymphoma cell line with known genetic alterations.

Detailed Summary

Karpas-422 is a human diffuse large B-cell lymphoma (DLBCL) cell line derived from a patient with lymphoma. It is commonly used in research to study the molecular mechanisms of DLBCL, including genetic mutations and their implications in cancer progression. This cell line has been characterized in multiple studies, highlighting its utility in understanding the genetic and molecular basis of lymphomas. Research on Karpas-422 has contributed to the identification of key mutations and pathways involved in DLBCL, such as those related to the B-cell receptor signaling and NF-κB pathways. Additionally, it has been used to investigate the role of specific genes and their expression in the context of lymphoma development and therapy resistance.

Research Applications

Study of genetic mutations in DLBCLInvestigation of B-cell receptor signaling pathwaysAnalysis of NF-κB pathway involvement in lymphomaResearch on therapy resistance mechanisms

Key Characteristics

Commonly used in lymphoma researchCharacterized in multiple studiesRelevant for understanding DLBCL molecular mechanisms
Generated on 6/16/2025

Basic Information

Database IDCVCL_1325
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age73
Age CategoryAdult
SexFemale

Disease Information

DiseaseDiffuse large B-cell lymphoma
LineageLymphoid
SubtypeDiffuse Large B-Cell Lymphoma, NOS
OncoTree CodeDLBCLNOS

DepMap Information

Source TypeDSMZ
Source IDACH-000315_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Lys319Ter (c.955A>T)Homozygous-from parent cell line LAMA-84
MutationSimpleARID1Ap.Gln2176fs*48 (c.6527_6528delAG)Heterozygous-Unknown, Unknown

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D13S317
12
D16S539
13
D18S51
12,14
D19S433
14,16
D21S11
29
D2S1338
19,20
D3S1358
15,18
D5S818
11,12
D7S820
12,13
D8S1179
11,15
FGA
23,27
Penta D
9,12
Penta E
7,17
TH01
6,9
TPOX
8
vWA
19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.

O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.

J. Virol. 89:713-729(2015).

Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing.

Marra M.A.

Blood 122:1256-1265(2013).

Genetic heterogeneity of diffuse large B-cell lymphoma.";

Dunson D.B., Dave S.S.

Proc. Natl. Acad. Sci. U.S.A. 110:1398-1403(2013).

MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma.";

Hernandez-Ilizaliturri F.J., Tzankov A., Lenz G.

Leukemia 27:1381-1390(2013).

Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma.

Kutok J.L., Shipp M.A.

Blood 116:3268-3277(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Expression of the ULBP ligands for NKG2D by B-NHL cells plays an important role in determining their susceptibility to rituximab-induced ADCC.

Mori F., Ding J.-M., Komatsu H., Iida S., Ueda R.

Int. J. Cancer 125:212-221(2009).

Copy number abnormalities, MYC activity, and the genetic fingerprint of normal B cells mechanistically define the microRNA profile of diffuse large B-cell lymphoma.

Robetorye R.S., Aguiar R.C.T.

Blood 113:6681-6690(2009).

Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas.

Martinez-Climent J.A.

Blood 109:271-280(2007).

Microarray analysis of B-cell lymphoma cell lines with the t(14;18).

Elenitoba-Johnson K.S.J.

J. Mol. Diagn. 4:123-136(2002).

Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia.

Aizawa Y., Ueda R., Seto M.

Jpn. J. Cancer Res. 89:712-718(1998).

The (2;5)(p23;q35) translocation in cell lines derived from malignant lymphomas: absence of t(2;5) in Hodgkin-analogous cell lines.

Quentmeier H., Drexler H.G.

Leukemia 10:142-149(1996).

Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoblastic leukaemia cell lines.

Uppenkamp M.J., Nowrousian M.R., Seeber S., Opalka B.

Br. J. Haematol. 91:350-354(1995).

Deletions and rearrangement of CDKN2 in lymphoid malignancy.";

Millar J.L., Catovsky D., Dyer M.J.S.

Blood 85:893-901(1995).

A new human B-cell non-Hodgkin's lymphoma cell line (Karpas 422) exhibiting both t (14;18) and t(4;11) chromosomal translocations.

Dyer M.J.S., Fischer P., Nacheva E., Labastide W.B., Karpas A.

Blood 75:709-714(1990).

Phenotypic and genotypic characterization of 14 leukemia and lymphoma cell lines with 11q23 translocations.

Ueda R., Nakazawa S.

Leuk. Res. 16:1155-1163(1992).

The leukemia-lymphoma cell line factsbook.";

Drexler H.G.

(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).