KM12Homo sapiens (Human)Cancer cell line

Also known as: KM-12, KM.12, KIM12

🤖 AI SummaryBased on 16 publications

Quick Overview

Human colon cancer cell line with known mutations and drug sensitivity profiles.

Detailed Summary

The KM12 cell line is a human colon cancer cell line derived from the NCI-60 panel, widely used in cancer research for drug screening and molecular profiling. It has been characterized for mutations in key oncogenes and tumor suppressor genes, including KRAS and TP53, which are critical in cancer progression. The cell line exhibits specific drug sensitivity profiles, making it valuable for studying therapeutic responses and resistance mechanisms. Its genomic and transcriptomic data are part of extensive research efforts to understand cancer biology and develop targeted therapies.

Research Applications

Drug ScreeningMolecular ProfilingMutation AnalysisDrug Sensitivity Studies

Key Characteristics

KRAS MutationTP53 MutationDrug Sensitivity ProfilesGenomic Instability
Generated on 6/16/2025

Basic Information

Database IDCVCL_1331
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age CategoryUnknown
SexUnknown
Subtype FeaturesMSI

Disease Information

DiseaseColon carcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeJCRB
Source IDACH-000969_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene fusionNTRK1TPM3-NTRK1--from parent cell line KM12
MutationSimpleACVR2Ap.Lys437Argfs*5 (c.1310delA)Homozygous-PubMed=12615714
MutationSimpleAPCp.Asn1819fs*7 (c.5454_5455insA)Heterozygous-from parent cell line KM12
MutationSimpleBRAFp.Ala404Cysfs*9 (c.1208dupC) (p.Pro403fs)Heterozygous-Unknown, PubMed=28683746
MutationSimpleBRCA2p.Asn1784Hisfs*7 (c.5350_5351delAA)Heterozygous-from parent cell line KM12
MutationSimplePTENp.Gly129Ter (c.385G>T)Heterozygous-from parent cell line KM12
MutationSimplePTENp.Lys267Argfs*9 (c.800delA) (p.Leu265fs, c.795delA)Heterozygous-Unknown, Unknown, PubMed=25230021
MutationSimpleTGFBR2p.Lys128Serfs*35 (c.383delA)Homozygous-PubMed=12615714
MutationSimpleTP53p.Val73Trpfs*50 (c.216delC) (p.P72fs)Heterozygous-Unknown, Unknown, PubMed=9887230
MutationSimpleTP53p.His179Arg (c.536A>G)Unspecified-PubMed=35297208

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,12
D13S317
12,15
D16S539
11
D18S51
13
D19S433
11,14
D21S11
27
D3S1358
14
D5S818
10
D7S820
8,8.3
D8S1179
11,13
FGA
20,22
Penta D
12
Penta E
14,18
TH01
9.3
TPOX
11,12
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.

Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.

Cancer Res. 58:1130-1134(1998).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.

Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.

Cancer Res. 63:994-999(2003).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition.

Siena S., Veronese S., Galvani A., Isacchi A.

Mol. Oncol. 8:1495-1507(2014).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.

Nagayama S., Fujita N., Sugimoto Y., Seimiya H.

Mol. Cancer Ther. 16:752-762(2017).