KMS-12-BMHomo sapiens (Human)Cancer cell line

Also known as: Kawasaki Medical School-12-Bone Marrow, KMS12, KMS-12, KMS12BM, KMS12-BM, KMS-12BM, KMS 12 BM

🤖 AI SummaryBased on 14 publications

Quick Overview

Human multiple myeloma cell line with B-cell origin

Detailed Summary

KMS-12-BM is a human multiple myeloma cell line derived from a B-cell lineage. It is widely used in research to study the molecular mechanisms of multiple myeloma, particularly focusing on genetic alterations and their implications in disease progression. This cell line has been characterized in various studies for its specific genetic features, including translocations involving the MYC gene and other key oncogenes. Research on KMS-12-BM has contributed to understanding the role of MYC in myeloma pathogenesis and has been utilized in drug sensitivity studies to identify potential therapeutic targets. The cell line is also noted for its expression of specific markers that are relevant to myeloma research, such as CD138 and other surface antigens.

Research Applications

Molecular mechanisms of multiple myelomaGenetic alterations in myeloma progressionMYC gene translocationsDrug sensitivity studiesTherapeutic target identification

Key Characteristics

B-cell originMYC gene translocationsExpression of CD138Used in drug sensitivity assays
Generated on 6/16/2025

Basic Information

Database IDCVCL_1334
SpeciesHomo sapiens (Human)
Tissue SourceBone marrow[UBERON:UBERON_0002371]

Donor Information

Age64
Age CategoryAdult
SexFemale

Disease Information

DiseaseMultiple myeloma
LineageLymphoid
SubtypePlasma Cell Myeloma
OncoTree CodePCM

DepMap Information

Source TypeDSMZ
Source IDACH-000380_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg337Leu (c.1010G>T)Homozygous-PubMed=21173094

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
9
D13S317
8
D16S539
11
D18S51
14,15
D19S433
13,14
D21S11
30.2,32.2
D2S1338
18,20
D3S1358
16
D5S818
14
D7S820
11
D8S1179
10,16
FGA
20
Penta D
14
Penta E
12,18
TH01
6,9
TPOX
8,11
vWA
14,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis.

Sirota M., Wiita A.P.

Leukemia 34:2754-2765(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

The LL-100 panel: 100 cell lines for blood cancer studies.";

MacLeod R.A.F., Nagel S., Steube K.G., Uphoff C.C., Drexler H.G.

Sci. Rep. 9:8218-8218(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines.

Moreau-Aubry A., Amiot M., Pellat-Deceunynck C.

Cytometry A 87:285-288(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Addiction to c-MYC in multiple myeloma.";

Holien T., Vatsveen T.K., Hella H., Waage A., Sundan A.

Blood 120:2450-2453(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines.

Pellat-Deceunynck C.

Haematologica 96:574-582(2011).

Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles.

Todoerti K., Ronchetti D., Lambertenghi-Deliliers G., Neri A.

Genes Chromosomes Cancer 48:521-531(2009).

An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma.

Fabris S., Lambertenghi-Deliliers G., Neri A.

BMC Med. Genomics 1:37.1-37.9(2008).

Characterization of MYC translocations in multiple myeloma cell lines.

Dib A., Gabrea A., Glebov O.K., Bergsagel P.L., Kuehl W.M.

J. Natl. Cancer Inst. Monogr. 39:25-31(2008).

Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.

Stewart A.K., Carpten J.D., Bergsagel P.L.

Cancer Cell 12:131-144(2007).

Molecular characterization of human multiple myeloma cell lines by integrative genomics: insights into the biology of the disease.

Lambertenghi-Deliliers G., Bertoni F., Neri A.

Genes Chromosomes Cancer 46:226-238(2007).

The phenotype of normal, reactive and malignant plasma cells. Identification of 'many and multiple myelomas' and of new targets for myeloma therapy.

Moreau P., Amiot M., Pellat-Deceunynck C.

Haematologica 91:1234-1240(2006).

Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma.

Taniwaki M., Inazawa J.

Am. J. Pathol. 165:71-81(2004).

Cellular biological differences between human myeloma cell lines KMS-12-PE and KMS-12-BM established from a single patient.

Yawata Y., Ueki A., Yamada O.

Int. J. Hematol. 72:216-222(2000).

Malignant hematopoietic cell lines: in vitro models for the study of multiple myeloma and plasma cell leukemia.

Drexler H.G., Matsuo Y.

Leuk. Res. 24:681-703(2000).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines.

Kuehl W.M.

Blood 88:674-681(1996).

Establishment of five human myeloma cell lines.";

Yawata Y., Kimoto T.

In Vitro Cell. Dev. Biol. 25:723-729(1989).

Establishment and characterization of five human myeloma cell lines.

Ohtsuki T., Yawata Y., Namba M.

Hum. Cell 2:297-303(1989).

Two human myeloma cell lines, amylase-producing KMS-12-PE and amylase-non-producing KMS-12-BM, were established from a patient, having the same chromosome marker, t(11;14)(q13;q32).

Ohtsuki T., Yawata Y., Wada H., Sugihara T., Mori M., Namba M.

Br. J. Haematol. 73:199-204(1989).

The leukemia-lymphoma cell line factsbook.";

Drexler H.G.

(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).

Multiple myeloma cell lines.";

Jernberg-Wiklund H., Nilsson K.

(In book chapter) Human cell culture. Vol. 3. Cancer cell lines part 3; Masters J.R.W., Palsson B.O. (eds.); pp.81-155; Kluwer Academic Publishers; New York; USA (2000).