KuramochiHomo sapiens (Human)Cancer cell line
Also known as: KURAMOCHI
Quick Overview
Human high-grade serous ovarian cancer cell line with genomic and proteomic data available.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1345 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Ascites[UBERON:UBERON_0007795] |
Donor Information
Age Category | Unknown |
---|---|
Sex | Female |
Race | asian |
Disease Information
Disease | High grade ovarian serous adenocarcinoma |
---|---|
Lineage | Ovary/Fallopian Tube |
Subtype | High-Grade Serous Ovarian Cancer |
OncoTree Code | HGSOC |
DepMap Information
Source Type | HSRRB |
---|---|
Source ID | ACH-000524_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Asp281Tyr (c.841G>T) | Unspecified | - | PubMed=32784519 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Identification of ovarian high-grade serous carcinoma cell lines that show estrogen-sensitive growth as xenografts in immunocompromised mice.
Herodek B., Arteagabeitia A.B., Valenti M., Kirkin V.
Sci. Rep. 10:10799-10799(2020).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.
van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.
Nat. Commun. 10:3574.1-3574.11(2019).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.
Velculescu V.E., Scharpf R.B.
Cell Rep. 25:2617-2633(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status.
Tyanova S., Montag A., Lastra R.R., Lengyel E., Mann M.
Nat. Commun. 7:12645.1-12645.14(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Type-specific cell line models for type-specific ovarian cancer research.
Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.
PLoS ONE 8:E72162-E72162(2013).
Evaluating cell lines as tumour models by comparison of genomic profiles.
Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.
Nat. Commun. 4:2126.1-2126.10(2013).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.
Takayama M., Sato A., Inazawa J.
Jpn. J. Cancer Res. 93:1114-1122(2002).
A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization.
Sato A., Inazawa J.
Gynecol. Oncol. 81:172-177(2001).
Screening the p53 status of human cell lines using a yeast functional assay.
Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
Mol. Carcinog. 19:243-253(1997).
Quantitative analysis on in vitro drug sensitivity of cultured human ovarian cancer cell lines.
Motoyama T.
Nihon Sanka Fujinka Gakkai Zasshi 34:308-314(1982).
Biological characterization including sensitivity to mitomycin C of cultured human ovarian cancers.
Motoyama T.
Nihon Sanka Fujinka Gakkai Zasshi 33:1197-1204(1981).