L-363Homo sapiens (Human)Cancer cell line

Also known as: L363, L 363

🤖 AI SummaryBased on 15 publications

Quick Overview

Human multiple myeloma cell line with B-cell origin, used in cancer research.

Detailed Summary

The L-363 cell line is a human multiple myeloma cell line derived from a plasma cell leukemia patient. It is characterized as a B-cell lineage and is commonly used in cancer research to study the molecular mechanisms of multiple myeloma. This cell line has been utilized in various studies focusing on genetic mutations, drug sensitivity, and the identification of biomarkers related to myeloma progression. Research involving L-363 has contributed to understanding the complexities of myeloma biology and has been instrumental in developing targeted therapies. The cell line is known for its ability to model the genetic and phenotypic features of multiple myeloma, making it a valuable tool for in vitro studies.

Research Applications

Cancer researchGenetic mutation studiesDrug sensitivity testingBiomarker identification

Key Characteristics

B-cell lineageMultiple myeloma originUsed in in vitro studies
Generated on 6/16/2025

Basic Information

Database IDCVCL_1357
SpeciesHomo sapiens (Human)
Tissue SourcePeripheral blood[UBERON:UBERON_0000178]

Donor Information

Age36
Age CategoryAdult
SexFemale

Disease Information

DiseaseMultiple myeloma
LineageLymphoid
SubtypePlasma Cell Myeloma
OncoTree CodePCM

DepMap Information

Source TypeDSMZ
Source IDACH-000183_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Ser261Thr (c.782G>C)Homozygous-Unknown, Unknown
MutationSimplePIK3CAp.Glu545Lys (c.1633G>A)Heterozygous-from parent cell line MCF-7
MutationSimpleNRASp.Gln61His (c.183A>C)Unspecified-PubMed=21173094

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
12
D16S539
10,12
D18S51
14
D19S433
14,16
D21S11
30,32.2
D2S1338
18,26
D3S1358
15,18
D5S818
11,12
D7S820
9,11
D8S1179
12,13
FGA
19,22
Penta D
9,13
Penta E
13,16
TH01
6,9.3
TPOX
8,12
vWA
16,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis.

Sirota M., Wiita A.P.

Leukemia 34:2754-2765(2020).

The LL-100 panel: 100 cell lines for blood cancer studies.";

MacLeod R.A.F., Nagel S., Steube K.G., Uphoff C.C., Drexler H.G.

Sci. Rep. 9:8218-8218(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways.

Pellat-Deceunynck C.

J. Hematol. Oncol. 11:137.1-137.13(2018).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines.

Moreau-Aubry A., Amiot M., Pellat-Deceunynck C.

Cytometry A 87:285-288(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Karyotypic variability of human myeloma cell lines.";

Turilova V.I., Smirnova T.D.

Tsitologiia 54:621-636(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines.

Pellat-Deceunynck C.

Haematologica 96:574-582(2011).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Characterization of MYC translocations in multiple myeloma cell lines.

Dib A., Gabrea A., Glebov O.K., Bergsagel P.L., Kuehl W.M.

J. Natl. Cancer Inst. Monogr. 39:25-31(2008).

Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.

Stewart A.K., Carpten J.D., Bergsagel P.L.

Cancer Cell 12:131-144(2007).

The phenotype of normal, reactive and malignant plasma cells. Identification of 'many and multiple myelomas' and of new targets for myeloma therapy.

Moreau P., Amiot M., Pellat-Deceunynck C.

Haematologica 91:1234-1240(2006).

Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma.

Taniwaki M., Inazawa J.

Am. J. Pathol. 165:71-81(2004).

Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma.

Kuehl W.M., Bergsagel P.L.

Blood 97:729-736(2001).

Malignant hematopoietic cell lines: in vitro models for the study of multiple myeloma and plasma cell leukemia.

Drexler H.G., Matsuo Y.

Leuk. Res. 24:681-703(2000).

Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells.";

Bataille F.-R., Amiot M.

Br. J. Haematol. 107:392-395(1999).

Fluorescence in situ hybridization analysis shows the frequent occurrence of 14q32.3 rearrangements with involvement of immunoglobulin switch regions in myeloma cell lines.

Lokhorst H.M., Clevers H.C., Bast B.J.E.G.

Cancer Genet. Cytogenet. 109:99-107(1999).

Phenotypic analysis of human myeloma cell lines.";

Bataille F.-R.

Blood 73:566-572(1989).

Long-term cultivation of plasma cell leukemia cells and autologous lymphoblasts (LCL) in vitro: a comparative study.

Fonatsch C., Laskewitz E., Guggenheim R.

Blut 36:331-338(1978).

The leukemia-lymphoma cell line factsbook.";

Drexler H.G.

(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).

Multiple myeloma cell lines.";

Jernberg-Wiklund H., Nilsson K.

(In book chapter) Human cell culture. Vol. 3. Cancer cell lines part 3; Masters J.R.W., Palsson B.O. (eds.); pp.81-155; Kluwer Academic Publishers; New York; USA (2000).