L-428Homo sapiens (Human)Cancer cell line

Also known as: L428, L 428

🤖 AI SummaryBased on 6 publications

Quick Overview

Human Hodgkin lymphoma cell line with p53 mutations and immune evasion mechanisms.

Detailed Summary

L-428 is a human Hodgkin lymphoma cell line derived from a patient with classical Hodgkin lymphoma. It exhibits mutations in the TP53 gene, including a 33 bp deletion in exon 4, leading to a truncated p53 protein with impaired transcriptional activity. This cell line is used to study the role of p53 dysfunction in lymphomagenesis and immune evasion. L-428 has been utilized in research on the molecular mechanisms of Hodgkin lymphoma, including the analysis of genetic alterations and their impact on tumor progression. The cell line is also relevant for investigating the interaction between tumor cells and the immune system, particularly in the context of immune checkpoint pathways.

Research Applications

Analysis of TP53 mutations in Hodgkin lymphomaStudy of p53 dysfunction in tumorigenesisInvestigation of immune evasion mechanismsMolecular mechanisms of lymphomagenesis

Key Characteristics

TP53 gene mutationsImpaired p53 transcriptional activityImmune evasion mechanismsRelevance to Hodgkin lymphoma pathogenesis
Generated on 6/16/2025

Basic Information

Database IDCVCL_1361
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age37
Age CategoryAdult
SexFemale

Disease Information

DiseaseHodgkin lymphoma
LineageLymphoid
SubtypeHodgkin Lymphoma
OncoTree CodeHL

DepMap Information

Source TypeDSMZ
Source IDACH-000754_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Gly112_Val122del11 (c.334_366del33)Heterozygous-from parent cell line L-428 KS
Gene deletionTNFAIP3-Heterozygous-PubMed=19380639

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,13
D13S317
14
D16S539
11,12
D18S51
14
D19S433
13,14
D21S11
31.2
D2S1338
17,19
D3S1358
14,18
D5S818
11,12
D7S820
11
D8S1179
14
FGA
19,25,26
Penta D
8,9
Penta E
10,17
TH01
7,9.3
TPOX
8,9
vWA
15
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

The LL-100 panel: 100 cell lines for blood cancer studies.";

MacLeod R.A.F., Nagel S., Steube K.G., Uphoff C.C., Drexler H.G.

Sci. Rep. 9:8218-8218(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Hodgkin lymphoma cell lines: to separate the wheat from the chaff.";

Drexler H.G., Pommerenke C., Eberth S., Nagel S.

Biol. Chem. 399:511-523(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A mass spectrometric-derived cell surface protein atlas.";

Aebersold R., Boheler K.R., Zandstra P.W., Wollscheid B.

PLoS ONE 10:E0121314-E0121314(2015).

High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.

O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.

J. Virol. 89:713-729(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma.

Kutok J.L., Shipp M.A.

Blood 116:3268-3277(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma.

Stanelle J., Siebert R., Kuppers R.

J. Exp. Med. 206:981-989(2009).

Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin's lymphoma.

Sturzenhofecker B., Kube D.

Leuk. Lymphoma 47:1932-1940(2006).

Epstein-Barr nuclear antigen 1-specific CD4(+) Th1 cells kill Burkitt's lymphoma cells.

Hanekom W.A., Fonteneau J.-F., Stevanovic S., Munz C.

J. Immunol. 169:1593-1603(2002).

Biological significance of the expression of HIV-related chemokine coreceptors (CCR5 and CXCR4) and their ligands by human hematopoietic cell lines.

Gaulton G.N., Ratajczak M.Z.

Leukemia 14:1821-1832(2000).

PTEN gene alterations in lymphoid neoplasms.";

Sakai A., Thieblemont C., Wellmann A., Jaffe E.S., Raffeld M.

Blood 92:3410-3415(1998).

Telomere analysis by fluorescence in situ hybridization and flow cytometry.

Roos G.

Nucleic Acids Res. 26:3651-3656(1998).

The (2;5)(p23;q35) translocation in cell lines derived from malignant lymphomas: absence of t(2;5) in Hodgkin-analogous cell lines.

Quentmeier H., Drexler H.G.

Leukemia 10:142-149(1996).

Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoblastic leukaemia cell lines.

Uppenkamp M.J., Nowrousian M.R., Seeber S., Opalka B.

Br. J. Haematol. 91:350-354(1995).

Hodgkin's disease: establishment and characterization of four in vitro cell lines.

Boie C.

J. Cancer Res. Clin. Oncol. 101:111-124(1981).

Two neoplastic cell lines with unique features derived from Hodgkin's disease.

Schaadt M., Diehl V., Stein H., Fonatsch C., Kirchner H.H.

Int. J. Cancer 26:723-731(1980).

Hodgkin's disease cell lines: characteristics and biological activities.

Stein H., Gerdes J., Heit W.F.W., Ziegler A.

Haematol. Blood Transfus. 28:411-417(1983).

Properties of Hodgkin cell lines. Possible significance for pathophysiology and clinical medicine.

Ziegler A., Heit W.F.W., Diehl V.

Dtsch. Med. Wochenschr. 108:936-944(1983).

Hodgkin's disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles.

Drexler H.G., Gaedicke G., Lok M.-S., Diehl V., Minowada J.

Leuk. Res. 10:487-500(1986).

Production of transforming growth factor-beta activity by Ki-1 positive lymphoma cells and analysis of its role in the regulation of Ki-1 positive lymphoma growth.

Newcom S.R., Kadin M.E., Ansari A.A.

Am. J. Pathol. 131:569-577(1988).

Biology of Hodgkin cell lines.";

Tesch H., Fonatsch C., Stein H., Diehl V.

Recent Results Cancer Res. 117:53-61(1989).

The leukemia-lymphoma cell line factsbook.";

Drexler H.G.

(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).