LS411NHomo sapiens (Human)Cancer cell line

Also known as: LS411, LS 411, LS-411, LS-411N

🤖 AI SummaryBased on 13 publications

Quick Overview

Human colorectal cancer cell line with known genetic mutations and drug sensitivity profiles.

Detailed Summary

LS411N is a human colorectal cancer cell line derived from a primary tumor. It is widely used in cancer research to study the molecular mechanisms of colorectal cancer and to evaluate the efficacy of targeted therapies. The cell line exhibits specific genetic alterations, including mutations in key oncogenes and tumor suppressor genes, which are associated with its response to various therapeutic agents. Research on LS411N has contributed to understanding the role of genetic heterogeneity in cancer progression and drug resistance. The cell line is part of several large-scale studies that aim to identify biomarkers for personalized cancer treatment.

Research Applications

Molecular mechanisms of colorectal cancerDrug sensitivity profilingGenetic heterogeneity studiesTargeted therapy development

Key Characteristics

Mutations in key oncogenes and tumor suppressor genesResponse to various therapeutic agentsPart of large-scale cancer research initiatives
Generated on 6/16/2025

Basic Information

Database IDCVCL_1385
SpeciesHomo sapiens (Human)
Tissue SourceCecum[UBERON:UBERON_0001153]

Donor Information

Age32
Age CategoryAdult
SexMale
Racecaucasian
Subtype FeaturesMSI

Disease Information

DiseaseCecum adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000985_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Tyr126Ter (c.378C>G)Homozygous-from parent cell line T24
MutationSimplePTENp.Lys164Argfs*3 (c.491delA)Unspecified-PubMed=32321971
MutationSimplePTENp.Cys105Valfs*8 (c.313delT)Heterozygous-from parent cell line LS411N
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590
MutationSimpleAPCp.Thr1556Asnfs*3 (c.4666dupA) (c.4666_4667insA)Heterozygous-from parent cell line WiDr
MutationSimpleAPCp.Gln789Ter (c.2365C>T)Heterozygous-from parent cell line LS411N

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
12,13,14
D16S539
11,12
D18S51
10,11
D19S433
13,14
D21S11
29,32,34
D2S1338
17,23,24
D3S1358
14,15
D5S818
9,15
D7S820
7.3,9.3
D8S1179
11,12
FGA
18,22,24
Penta D
9,11
Penta E
10,12,19
TH01
6
TPOX
8,9
vWA
15,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g.

Grade M., Gaedcke J.

Radiother. Oncol. 108:451-457(2013).

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

Orphanides G., French T., Wessels L.F.A.

BMC Med. Genomics 5:66.1-66.15(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.

Camps J., McNeil N.E., Difilippantonio M.J., Ried T.

Genes Chromosomes Cancer 49:204-223(2010).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Garcia-Foncillas J.

Mol. Cancer 5:29.1-29.10(2006).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.

Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.

Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Radio-induced modulation of transforming growth factor beta1 sensitivity in a p53 wild-type human colorectal-cancer cell line.

Suardet L., Li C., Little J.B.

Int. J. Cancer 68:126-131(1996).

Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.

Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).

Responsiveness of three newly established human colorectal cancer cell lines to transforming growth factors beta 1 and beta 2.

Eliason J.F., Odartchenko N.

Cancer Res. 52:3705-3712(1992).

Growth stimulation of a human colorectal carcinoma cell line by interleukin-1 and -6 and antagonistic effects of transforming growth factor beta 1.

Lorenzoni M., Givel J.-C., Odartchenko N.

Eur. J. Cancer 28A:1894-1899(1992).