LS513Homo sapiens (Human)Cancer cell line

Also known as: LS 513, LS-513

🤖 AI SummaryBased on 15 publications

Quick Overview

LS513 is a colorectal cancer cell line used in research for understanding molecular mechanisms and drug responses.

Detailed Summary

LS513 is a colorectal cancer cell line derived from human tissue, widely used in cancer research to study molecular mechanisms and drug responses. It is part of a panel of cell lines that have been characterized for their genetic and molecular profiles, contributing to the understanding of colorectal cancer biology. LS513 has been utilized in studies related to genomic alterations, drug sensitivity, and the identification of potential therapeutic targets. Research involving LS513 has highlighted its role in investigating the effects of mutations and genetic variations on cancer progression and treatment outcomes.

Research Applications

Genomic and molecular profilingDrug sensitivity and resistance studiesIdentification of therapeutic targets

Key Characteristics

Used in colorectal cancer researchPart of a panel of characterized cell linesRelevant for studying genetic alterations and their impact on cancer progression
Generated on 6/16/2025

Basic Information

Database IDCVCL_1386
SpeciesHomo sapiens (Human)
Tissue SourceIntestine, ileocecal valve[UBERON:UBERON_0000569]

Donor Information

Age63
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseCecum adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000007_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationNone reportedTP53---PubMed=19787792
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757
MutationSimpleCTNNB1p.Ala5_Ala80del (c.14_241del228)Homozygous-from parent cell line LS513

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10
D13S317
9,10
D16S539
12,13
D18S51
12,18
D19S433
12,14
D21S11
30
D2S1338
19
D3S1358
15
D5S818
9,11
D7S820
8,11
D8S1179
13
FGA
19,21
Penta D
9,14
Penta E
5,18
TH01
8
TPOX
8
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g.

Grade M., Gaedcke J.

Radiother. Oncol. 108:451-457(2013).

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

Orphanides G., French T., Wessels L.F.A.

BMC Med. Genomics 5:66.1-66.15(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Garcia-Foncillas J.

Mol. Cancer 5:29.1-29.10(2006).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.

Hamelin R.

Oncogene 20:5025-5032(2001).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.

Hamelin R.

Cancer Res. 57:300-303(1997).

Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.

Thomas G., Hamelin R.

Oncogene 13:2727-2730(1996).

Radio-induced modulation of transforming growth factor beta1 sensitivity in a p53 wild-type human colorectal-cancer cell line.

Suardet L., Li C., Little J.B.

Int. J. Cancer 68:126-131(1996).

Responsiveness of three newly established human colorectal cancer cell lines to transforming growth factors beta 1 and beta 2.

Eliason J.F., Odartchenko N.

Cancer Res. 52:3705-3712(1992).

Growth stimulation of a human colorectal carcinoma cell line by interleukin-1 and -6 and antagonistic effects of transforming growth factor beta 1.

Lorenzoni M., Givel J.-C., Odartchenko N.

Eur. J. Cancer 28A:1894-1899(1992).