MC116Homo sapiens (Human)Cancer cell line

Also known as: MC 116, MC-116

🤖 AI SummaryBased on 11 publications

Quick Overview

MC116 is a human B-cell line derived from Burkitt's lymphoma, used in cancer research.

Detailed Summary

MC116 is a human B-cell line established from Burkitt's lymphoma, commonly used in cancer research. It exhibits specific genetic characteristics, including mutations in the c-myc gene and potential alterations in the p16/INK4a and p15/INK4b genes. These features make it a valuable model for studying lymphoma biology and therapeutic responses. The cell line is also part of large-scale genomic and proteomic studies, contributing to understanding cancer mechanisms and drug sensitivity.

Research Applications

Cancer researchGenomic and proteomic studiesDrug sensitivity profiling

Key Characteristics

Mutations in c-myc genePotential alterations in p16/INK4a and p15/INK4b genesUsed in large-scale genomic and proteomic analyses
Generated on 6/16/2025

Basic Information

Database IDCVCL_1399
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age CategoryUnknown
SexMale

Disease Information

DiseaseB-cell non-Hodgkin lymphoma
LineageLymphoid
SubtypeMature B-Cell Neoplasms
OncoTree CodeMBN

DepMap Information

Source TypeATCC
Source IDACH-000583_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Cys238Tyr (c.713G>A)Unspecified-PubMed=12037578

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10,12
D13S317
12
D16S539
12
D18S51
12,13
D19S433
13,14
D21S11
29
D2S1338
17,24
D3S1358
14,17
D5S818
12
D7S820
10,13
D8S1179
14,15
FGA
20,26
Penta D
9,13
Penta E
7,12
TH01
9.3,10
TPOX
8,10
vWA
15,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.

O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.

J. Virol. 89:713-729(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.

Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.

Blood 91:1680-1687(1998).

IL-12 expression in AIDS-related lymphoma B cell lines.";

Trinchieri G.

J. Immunol. 156:1626-1637(1996).

The (2;5)(p23;q35) translocation in cell lines derived from malignant lymphomas: absence of t(2;5) in Hodgkin-analogous cell lines.

Quentmeier H., Drexler H.G.

Leukemia 10:142-149(1996).

Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.

Jain V.K., Judde J.-G., Max E.E., Magrath I.T.

J. Immunol. 150:5418-5428(1993).

Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.

Kohn K.W.

Cancer Res. 53:4776-4780(1993).

Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.

Magrath I.T.

FASEB J. 7:951-956(1993).

DNA double-strand break rejoining deficiency in TK6 and other human B-lymphoblast cell lines.

Olive P.L.

Radiat. Res. 134:307-315(1993).

Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas.

Bhatia K.G., Huppi K., Spangler G., Siwarski D., Iyer R., Magrath I.T.

Nat. Genet. 5:56-61(1993).

Relationships between G1 arrest and stability of the p53 and p21Cip1/Waf1 proteins following gamma-irradiation of human lymphoma cells.

O'Connor P.M.

Cancer Res. 55:2387-2393(1995).

Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.

Parsons R.G.

J. Immunol. 129:1336-1342(1982).

Examination of Epstein-Barr virus and C-type proviral sequences in American and African lymphomas and derivative cell lines.

Sherrick D., Gray T.E.

Cancer Res. 41:3165-3171(1981).

Characterization of lymphoma-derived cell lines: comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. II. Surface markers.

Santaella M., Hammer C., Frank M.M., Reaman G., Novikovs L.

J. Natl. Cancer Inst. 64:477-483(1980).

Characterization of lymphoma-derived cell lines: comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. I. Physical, cytogenetic, and growth characteristics.

Gerber P., Freeman C.B., Novikovs L.

J. Natl. Cancer Inst. 64:465-476(1980).

Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.

Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.

Cell. Immunol. 103:394-408(1986).

Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.

Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.

Cancer Res. 46:1182-1188(1986).

Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.

Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.

Int. J. Cancer 39:211-218(1987).

p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.

Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.

Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991).

Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.

Benjamin D., Knobloch T.J., Dayton M.A.

Blood 80:1289-1298(1992).

The leukemia-lymphoma cell line factsbook.";

Drexler H.G.

(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).

Web Resources